YANG Chengsheng1 ZHANG Qin1 ZHAO Chaoying1, JI Lingyun2, . Small Baseline Bubset InSAR Technology Used in Datong Basin GroundSubsidence,Fissure and Fault Zone Monitoring[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8): 945-950. DOI: 10.13203/j.whugis20130656
Citation: YANG Chengsheng1 ZHANG Qin1 ZHAO Chaoying1, JI Lingyun2, . Small Baseline Bubset InSAR Technology Used in Datong Basin GroundSubsidence,Fissure and Fault Zone Monitoring[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8): 945-950. DOI: 10.13203/j.whugis20130656

Small Baseline Bubset InSAR Technology Used in Datong Basin GroundSubsidence,Fissure and Fault Zone Monitoring

Funds: The National Natural Science Foundation of China,Nos.41304016,41274004,41372375;China Earthquake SpecialFund,No.201208009;the Key Laboratory of the Precision Engineering and Industrial Measurement,No.PF2011-12.
More Information
  • Author Bio:

    YANG Chengsheng1 ZHANG Qin1 ZHAO Chaoying1: YANG Chengsheng,PhD,specializes in high precision InSAR techniques and methods for geological disaster monitoring.

  • Corresponding author:

    ZHANG Qin

  • Received Date: November 06, 2013
  • Revised Date: August 04, 2014
  • Published Date: August 04, 2014
  • Objective Datong basin is one of the geological hazards development zones where geological disasterhas a high frequency,such as the ground subsidence,ground fissure and so on.In this paper,thesmall baseline subset(SBAS)InSAR technology was used to process 40scenes of Envisat SAR datacovering this area,and the surface deformation distribution characteristics were obtained.The timeseries deformation characteristics of the typical subsidence area were analyzed.The relationship amongthe regional ground subsidence,ground fissures and fault were also analyzed.The results show thatthe ground subsidence is influenced by groundwater exploitation and controlled by the faults.At thesame time,the horizontal and vertical activity characteristics of the Locomotive Factory ground fissurewere analyzed,and its relationship with precipitation.
  • [1]
    Peng Jianbing,Fan Wen,Li Xian,et al.Some KeyQuestions in the Formation of Ground Fissures inthe Fen-Wei Basin[J].Journal of Engineering Ge-ology,2007,15(4):433-440(彭建兵,范文,李喜安,等.汾渭盆地地裂缝成因研究中的若干关键问题[J].工程地质学报,2007,15(4):433-440)[2] Liu Yuhai,Chen Zhixin,Niu Fujun.Characteristicsof Land Subsidence and Environmental GeologyEffects Induced by Groundwater Exploration in Da-tong City[J].The Chinese Journal of GeologicalHazard and Control,1999,9(2):155-160(刘玉海,陈志新,牛富俊.大同市地面沉降特征及地下水开采的环境地质效应[J].中国地质灾害与防治学报,1999,9(2):155-160)[3] Zan Yalin.Relation Between Ground Fissure For-mation and Ground Water Mining in Urban Datong[J].Coal Geology of China,2006,18(6):26-29(昝雅玲.大同市区地下水开采与地裂缝形成的关系[J].中国煤田地质,2006,18(6):26-29)[4] Li Shude,Yuan Renmao.The Formation Mecha-nism of Ground Fissure in Datong City[J].ActaScientiarum Naturalium Universitatis Pekinensis,2002,38(1):104-108(李树德,袁仁茂.大同地裂缝灾害形成机理[J].北京大学学报(自然科学版),2002,38(1):104-108)[5] Lv Jifeng.The Influence on Ground Fissures Activ-ities by Groundwater Exploitation[J].NeijiangScience and Technology,2004,3:79-80(吕继峰.大同市地下水开采对地裂缝活动的影响[J].内江科技,2004,3:79-80)[6] Ren Jianguo,Gong Weiguo,Jiao Xiangju.Distribu-tion Characteristics of Ground Fissure in Datong andIts Development Trend[J].Earthquake Reasearchin Shanxi,2004,118(3):39-42(任建国,龚卫国,焦向菊.山西大同市地裂缝的分布特征及其发展趋势[J].山西地震,2004,118(3):39-42)[7] Hanssen R.Radar Interferometry:Data Interpreta-tion and Error Analysis[M].New York:Springer,2001[8] Zhao Chaoying,Ding Xiaoli,Zhang Qin,et al.Mo-nitoring of Recent Land Subsidenceand Ground Fis-sures in Xi’an with SAR Interferometry[C].IS-PRS,Beijing,2008[9] Massonnet D M,Rossi C C,Carmona C,et al.TheDisplacement Field of the Landers EarthquakeMapped by Radar Interferometry[J]. Nature,1993,364(8):138-142[10]Zebker H A,Rosen P A,Goldstein R M,et al.Onthe Derivation of Coseismic Displacement Fields U-sing Differential Radar Interferometry:the LandersEarthquake[J].Journal of Geophysical Research,1994,99(B10):19617-19634[11]Lu Z,Patrick M,Fielding E J,et al.Lava Volumefrom the 1997Eruption of Okmok Volcano,Alas-ka,Estimated from Spaceborne and Airborne Inter-ferometric Synthetic Aperture Radar[J].IEEETrans Geosci.Remote Sens,2003,41:1428-1436[12]Goldstein R M,Engelhardt H,Kamb B.et al.Sat-ellite Radar Interferometry Formonitoring Ice SheetMotion:Application to an Antarctic Ice Stream[J].Science,1993,262(5 139):1525-1530[13]Lanari R,Mora O,Manunta M,et al.A Small-baseline Approach for Investigating Deformations onFull-resolution Differential SAR Interferograms[J].IEEE Transactions on Geoscience and Remote Sens-ing,2004,42:1377-1386[14]Lanari R,Casu F,Manzo M,et al.An Overview ofthe Small Baseline Subset Algorithm:A DInSARTechnique for Surface Deformation Analysis[J].Pure Appl.Geophys,2007,164(4):637-661[15]Berardino P.A New Algorithm for Surface Deform-ation Monitoring Based on Small Baseline Differenti-al SAR Interferograms[J].IEEE Transactions Geo-science and Remote Sensing,2002,40:2375-2383[16]Usai S.A Least Squares Database Approach forSAR Interferometry Data[J].IEEE Transactionson Geoscience and Remote Sensing,2003,41:753-760[17]Li Z,Fielding E J,Cross P.Integration of InSAR949武 汉 大 学 学 报 · 信 息 科 学 版2014年8月Time-series Analysis and Water-vapor Correctionfor Mapping Postseismic Motion After the 2003Bam(Iran)Earthquake[J].IEEE Trans.Geosci.Remote Sens,2009,47(9):3220-3230[18]Li Z,Fielding E J,Cross P,et al.InterferometricSynthetic Aperture Radar Atmospheric Correction:GPS Topography-dependent Turbulence Model[J].J Geophys Res,2006,111(B2):B02404[19]Hanssen R,Feijt A.A First Quantitative Evalua-tion of Atmospheric Effects on SAR Interferometry[C].Fringe 96’Workshop on ERS SAR Interfer-ometry,Switzerland,1996[20]Goldstein R M.Atmospheric Limitations to Repeat-track Radar Interferometry[J].Geophy Res Lett,1995,22:2517-2520[21]Hooper A.A Multi-temporal InSAR Method Incor-porating Both Persistent Scatterer and Small Base-line Approaches[J].Geophys Res Lett,2008,35:L16302[22]Hooper A,Zebker H A.Phase Unwrapping inThree Dimensions with Application to InSAR TimeSeries[J].J Opt Soc Am.A:Opt.Image Sci.Vis.,2010,24(9):2737-2747[23]Hooper A,Spaans K,Bekaert D,et al.Stamps/MTI Manual[D].Delft:Delft University of Tech-nology[24]Geological Environment Monitoring Center ofShanxi Province.Ground Fissure Exploration Re-port for Datong City[R].Shangxi:Geological Envi-ronment Monitoring Center of Shanxi Province,2006(山西省地质环境监测中心.山西省大同市地裂缝勘查报告[R].山西:山西省地质环境监测中心,2006)
  • Related Articles

    [1]CAO Jianfeng, KONG Jing, MAN Haijun, JU Bing, ZHANG Yu, LIU Huicui. Onboard Ultra-Stable Oscillator Long-Term Drift Calibration for Tianwen-1 Mission[J]. Geomatics and Information Science of Wuhan University, 2024, 49(12): 2181-2186. DOI: 10.13203/j.whugis20220082
    [2]ZHAO Danning, LEI Yu. Long-Term Characteristics Analysis of GLONASS In-Flight Clocks[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 895-904. DOI: 10.13203/j.whugis20190233
    [3]WU Yiwei, YANG Bin, XIAO Shenghong, WANG Maolei. Atomic Clock Models and Frequency Stability Analyses[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1226-1232. DOI: 10.13203/j.whugis20180058
    [4]LI Mingzhe, ZHANG Shaocheng, HU Youjian, HOU Weizhen. Comparison of GNSS Satellite Clock Stability Based on High Frequency Observations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1490-1495, 1503. DOI: 10.13203/j.whugis20160537
    [5]WANG Ning, WANG Yupu, LI Linyang, ZHAI Shufeng, LV Zhiping. Stability Analysis of the Space-borne Atomic Clock Frequency for BDS[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1256-1263. DOI: 10.13203/j.whugis20150806
    [6]GONG Hang, LIU Zengjun, PENG Jing, WANG Feixue. Estimation Method of GNSS On-Board Clock Short-Term Stability Based on Smoothed Broadcast Ephemeris[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7): 837-841.
    [7]ZHANG Caihong, LIU Jingnan, NIE Guigen. The Comparative Analysis of Long-term Stability of Pulsar Time and That of Atomic Time Using σ_z(τ)[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 847-850.
    [8]MAO Yue, CHEN Jianpeng, DAI Wei, JIA Xiaolin. Analysis of On-board Atomic Clock Stability Influences[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1182-1186.
    [9]GUO Hairong, YANG Yuanxi. Analyses of Main Error Sources on Time-Domain Frequency Stability for Atomic Clocks of Navigation Satellites[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 218-221.
    [10]Zhan Shaofeng. On Partial Extreme Stability[J]. Geomatics and Information Science of Wuhan University, 1990, 15(4): 85-90.
  • Cited by

    Periodical cited type(43)

    1. 崔婷婷,安雪莲,孙德亮,陈东升,朱有晨. 基于SHAP的可解释机器学习的滑坡易发性评价模型. 成都理工大学学报(自然科学版). 2025(01): 153-172 .
    2. 黄发明,张崟琅,郭子正,范宣梅,周创兵. 不同分级方法对区域滑坡易发性区划的影响. 工程科学与技术. 2024(01): 148-159 .
    3. 邬礼扬,殷坤龙,曾韬睿,刘书豪,刘真意. 不同栅格尺寸下输电线路地质灾害易发性评价. 地质科技通报. 2024(01): 241-252 .
    4. 陈宾,李颖懿,张联志,屈添强,魏娜,刘宁,黄春林. 地质灾害易发性评价因子分级的AIFFC算法优化. 中国地质灾害与防治学报. 2024(01): 72-81 .
    5. 刘长江,罗晓东. 南疆盐渍土峡谷景区滑坡易发性评价. 科技与创新. 2024(05): 71-74+77 .
    6. 何哲,石玉玲,李富春,贾卓龙,晏长根. 基于LightGBM模型的甘肃省临夏县滑坡易发性评价. 水资源与水工程学报. 2024(01): 197-205+216 .
    7. 田尤,黄海,高波,陈龙,李元灵,杨东旭,张佳佳,李洪梁. 考虑冻融侵蚀型物源的不同流域单元泥石流易发性评价——以藏东贡觉地区为例. 冰川冻土. 2024(01): 40-51 .
    8. 高星星,马鹏斐,吕义清,赵金亮,何海龙. 基于统计方法耦合地理探测器的地质灾害易发性评价——以吕梁山区为例. 水土保持通报. 2024(01): 193-205 .
    9. 肖燕,王潇,姚海鹏. 基于易发程度指数法的集镇斜坡地质灾害易发性评价——以茶恩寺镇斜坡为例. 科技和产业. 2024(09): 153-157 .
    10. 蔡抒,程先富. 基于不同模型的安徽大别山区滑坡易发性评价对比分析. 安徽师范大学学报(自然科学版). 2024(02): 152-160 .
    11. 肖海平,万俊辉,陈兰兰,范永超,陈磊. 加权信息量支持下融合InSAR形变特征的滑坡易发性评价. 大地测量与地球动力学. 2024(07): 718-724 .
    12. 李亚,邓南荣,陈朝,陈进栋,王琦,李冠虹. 基于多源模型的粤北山区县域地质灾害危险性评价与驱动力分析. 地球与环境. 2024(03): 330-342 .
    13. 寸得欣,令狐昌卫,马一奇,尹林虎,陈庆松,刘振南,涂春霖. 基于GIS和加权信息量模型的富源县地质灾害易发性评价. 科学技术与工程. 2024(18): 7563-7573 .
    14. 王清和,郑宇,刘珮勋,陈尚波,李佳. 非煤地下矿山灾害影响因素分析与风险管控体系研究. 世界有色金属. 2024(08): 192-195 .
    15. 王阳,周小虎,史小辉,黄琪,刘禄山. 青藏高原东北缘清水河流域地貌特征及其构造意义. 成都理工大学学报(自然科学版). 2024(04): 624-639+648 .
    16. 彭志忠,袁飞云,何朝阳,李东来,解明礼,饶泽迅. 地质灾害多源基础数据结构体系及应用. 成都理工大学学报(自然科学版). 2024(04): 675-686 .
    17. 张云,资锋,曹运江,成湘伟,韩用顺,唐龙. GIS支持下基于归一化信息量模型的地质灾害易发性评价. 矿业工程研究. 2024(02): 20-28 .
    18. 孙琪皓,刘桂卫,王飞,张璇钰,王衍汇. 铁路地质灾害早期识别与监测预警技术及应用研究. 铁道标准设计. 2024(09): 24-31 .
    19. 许烈,巨能攀,邓明东,解明礼,周福军,李朝纲,唐颍. 不同评价单元的滑坡易发性评价精度对比分析. 工程地质学报. 2024(05): 1640-1653 .
    20. 于小曼,简文星,邵山,王浩,简志华,吴凯锋,张峰. GIS支持下基于CF和CF-LR模型的恩施州滑坡灾害易发性评价. 地质与资源. 2024(05): 716-724 .
    21. 张凯. 区域滑坡地质灾害易发性评价研究. 科技与创新. 2024(22): 145-147 .
    22. 李昊,代泽林,毕杰. 输电线路地质灾害风险评估策略及方法. 云南电业. 2024(06): 8-13 .
    23. 刘金沧,王欢欢,李云,杨婷. 基于支持向量机的华南斜坡类地质灾害易发性评价:以肇庆市怀集县为例. 时空信息学报. 2024(06): 785-794 .
    24. 王瑛,祁京,王姝苓,李璨,俞海洋. 基于聚类与统计分级的河北省气象灾害综合区划研究. 灾害学. 2023(02): 85-88+113 .
    25. 张伟,周松林,尹仑. 基于优化MaxEnt模型的高山峡谷区地质灾害易发性评价——以云南省德钦县为例. 灾害学. 2023(02): 185-190 .
    26. 徐澯,黄智卿,宫阿都,巴婉茹. 面向不可移动文物的地震灾害风险评估——以福建省全国重点文物保护单位石窟寺及石刻为例. 北京师范大学学报(自然科学版). 2023(03): 449-455 .
    27. 马博,朱杰勇,刘帅,杨得虎. 联合时序InSAR和滑坡灾害易发性的元阳县滑坡灾害隐患识别. 地质灾害与环境保护. 2023(03): 8-14 .
    28. 章昱,王磊,伏永朋,刘亚磊,黄皓. 基于斜坡单元与信息量法的丹江口库区典型流域地质灾害易发性评价. 华南地质. 2023(03): 512-522 .
    29. 陈思尧,游水生,杨剑红,刘虹强. 基于信息量模型与层次分析法的地质灾害易发性评价——以宣汉县为例. 科技和产业. 2023(22): 221-229 .
    30. 孙庆敏,葛永刚,陈攀,梁馨月,杜宇琛. 汶川典型植物根-土复合体抗剪强度影响因素评价. 水土保持学报. 2022(01): 58-65 .
    31. 张重,龚健,李靖业,张子煜,张木茜. 基于信息量模型的三江源东部草地退化易发性评价——以青海省果洛州为例. 资源科学. 2022(03): 464-479 .
    32. 温鑫,范宣梅,陈兰,刘世康. 基于信息量模型的地质灾害易发性评价:以川东南古蔺县为例. 地质科技通报. 2022(02): 290-299 .
    33. 赵腾跃,何政伟. 基于信息量的金川县斜坡地质灾害易发性评价. 物探化探计算技术. 2022(02): 203-212 .
    34. 黄发明,石雨,欧阳慰平,洪安宇,曾子强,徐富刚. 基于证据权和卡方自动交互检测决策树的滑坡易发性预测. 土木与环境工程学报(中英文). 2022(05): 16-28 .
    35. 谢浪. 矿山地面塌陷区地质灾害风险模糊综合监测方法. 矿冶. 2022(04): 7-12+18 .
    36. 龚凌枫,徐伟,铁永波,卢佳燕,张玙,高延超. 基于数值模拟的城镇地质灾害危险性评价方法. 中国地质调查. 2022(04): 82-91 .
    37. 徐锦宏,翁茂芝,胡元平,王宁涛. 长江上游磨刀溪流域地质灾害易发性分区评价. 资源环境与工程. 2022(04): 494-503 .
    38. 简鹏,李文彦,张治家,时伟,党发宁,郭红东,李松. 基于多因素加权指数和法的区域地质灾害易发性评价研究——以麦积区为例. 甘肃地质. 2022(03): 63-72 .
    39. 周萍,邓辉,张文江,薛东剑,吴先谭,卓文浩. 基于信息量模型和机器学习方法的滑坡易发性评价研究——以四川理县为例. 地理科学. 2022(09): 1665-1675 .
    40. 田媛,巨能攀,解明礼,刘秀伟,何朝阳. 滑坡编录表达模式对易发性评价结果的影响. 成都理工大学学报(自然科学版). 2022(05): 606-615 .
    41. 王小东,罗园,付景保. 基于GIS的白龙江引水工程水源区地质灾害易发性评价. 南水北调与水利科技(中英文). 2022(06): 1231-1239 .
    42. 沈迪,郭进京,王志恒,陈俊合. 基于热点分析与地理探测器的地质灾害敏感性评价. 环境生态学. 2021(04): 83-89 .
    43. 黄立鑫,郝君明,李旺平,周兆叶,贾佩钱. 基于RBF神经网络-信息量耦合模型的滑坡易发性评价——以甘肃岷县为例. 中国地质灾害与防治学报. 2021(06): 116-126 .

    Other cited types(29)

Catalog

    Article views (2053) PDF downloads (590) Cited by(72)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return