YANG Chengsheng1 ZHANG Qin1 ZHAO Chaoying1, JI Lingyun2, . Small Baseline Bubset InSAR Technology Used in Datong Basin GroundSubsidence,Fissure and Fault Zone Monitoring[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8): 945-950. DOI: 10.13203/j.whugis20130656
Citation: YANG Chengsheng1 ZHANG Qin1 ZHAO Chaoying1, JI Lingyun2, . Small Baseline Bubset InSAR Technology Used in Datong Basin GroundSubsidence,Fissure and Fault Zone Monitoring[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8): 945-950. DOI: 10.13203/j.whugis20130656

Small Baseline Bubset InSAR Technology Used in Datong Basin GroundSubsidence,Fissure and Fault Zone Monitoring

Funds: The National Natural Science Foundation of China,Nos.41304016,41274004,41372375;China Earthquake SpecialFund,No.201208009;the Key Laboratory of the Precision Engineering and Industrial Measurement,No.PF2011-12.
More Information
  • Author Bio:

    YANG Chengsheng1 ZHANG Qin1 ZHAO Chaoying1: YANG Chengsheng,PhD,specializes in high precision InSAR techniques and methods for geological disaster monitoring.

  • Corresponding author:

    ZHANG Qin

  • Received Date: November 06, 2013
  • Revised Date: August 04, 2014
  • Published Date: August 04, 2014
  • Objective Datong basin is one of the geological hazards development zones where geological disasterhas a high frequency,such as the ground subsidence,ground fissure and so on.In this paper,thesmall baseline subset(SBAS)InSAR technology was used to process 40scenes of Envisat SAR datacovering this area,and the surface deformation distribution characteristics were obtained.The timeseries deformation characteristics of the typical subsidence area were analyzed.The relationship amongthe regional ground subsidence,ground fissures and fault were also analyzed.The results show thatthe ground subsidence is influenced by groundwater exploitation and controlled by the faults.At thesame time,the horizontal and vertical activity characteristics of the Locomotive Factory ground fissurewere analyzed,and its relationship with precipitation.
  • [1]
    Peng Jianbing,Fan Wen,Li Xian,et al.Some KeyQuestions in the Formation of Ground Fissures inthe Fen-Wei Basin[J].Journal of Engineering Ge-ology,2007,15(4):433-440(彭建兵,范文,李喜安,等.汾渭盆地地裂缝成因研究中的若干关键问题[J].工程地质学报,2007,15(4):433-440)[2] Liu Yuhai,Chen Zhixin,Niu Fujun.Characteristicsof Land Subsidence and Environmental GeologyEffects Induced by Groundwater Exploration in Da-tong City[J].The Chinese Journal of GeologicalHazard and Control,1999,9(2):155-160(刘玉海,陈志新,牛富俊.大同市地面沉降特征及地下水开采的环境地质效应[J].中国地质灾害与防治学报,1999,9(2):155-160)[3] Zan Yalin.Relation Between Ground Fissure For-mation and Ground Water Mining in Urban Datong[J].Coal Geology of China,2006,18(6):26-29(昝雅玲.大同市区地下水开采与地裂缝形成的关系[J].中国煤田地质,2006,18(6):26-29)[4] Li Shude,Yuan Renmao.The Formation Mecha-nism of Ground Fissure in Datong City[J].ActaScientiarum Naturalium Universitatis Pekinensis,2002,38(1):104-108(李树德,袁仁茂.大同地裂缝灾害形成机理[J].北京大学学报(自然科学版),2002,38(1):104-108)[5] Lv Jifeng.The Influence on Ground Fissures Activ-ities by Groundwater Exploitation[J].NeijiangScience and Technology,2004,3:79-80(吕继峰.大同市地下水开采对地裂缝活动的影响[J].内江科技,2004,3:79-80)[6] Ren Jianguo,Gong Weiguo,Jiao Xiangju.Distribu-tion Characteristics of Ground Fissure in Datong andIts Development Trend[J].Earthquake Reasearchin Shanxi,2004,118(3):39-42(任建国,龚卫国,焦向菊.山西大同市地裂缝的分布特征及其发展趋势[J].山西地震,2004,118(3):39-42)[7] Hanssen R.Radar Interferometry:Data Interpreta-tion and Error Analysis[M].New York:Springer,2001[8] Zhao Chaoying,Ding Xiaoli,Zhang Qin,et al.Mo-nitoring of Recent Land Subsidenceand Ground Fis-sures in Xi’an with SAR Interferometry[C].IS-PRS,Beijing,2008[9] Massonnet D M,Rossi C C,Carmona C,et al.TheDisplacement Field of the Landers EarthquakeMapped by Radar Interferometry[J]. Nature,1993,364(8):138-142[10]Zebker H A,Rosen P A,Goldstein R M,et al.Onthe Derivation of Coseismic Displacement Fields U-sing Differential Radar Interferometry:the LandersEarthquake[J].Journal of Geophysical Research,1994,99(B10):19617-19634[11]Lu Z,Patrick M,Fielding E J,et al.Lava Volumefrom the 1997Eruption of Okmok Volcano,Alas-ka,Estimated from Spaceborne and Airborne Inter-ferometric Synthetic Aperture Radar[J].IEEETrans Geosci.Remote Sens,2003,41:1428-1436[12]Goldstein R M,Engelhardt H,Kamb B.et al.Sat-ellite Radar Interferometry Formonitoring Ice SheetMotion:Application to an Antarctic Ice Stream[J].Science,1993,262(5 139):1525-1530[13]Lanari R,Mora O,Manunta M,et al.A Small-baseline Approach for Investigating Deformations onFull-resolution Differential SAR Interferograms[J].IEEE Transactions on Geoscience and Remote Sens-ing,2004,42:1377-1386[14]Lanari R,Casu F,Manzo M,et al.An Overview ofthe Small Baseline Subset Algorithm:A DInSARTechnique for Surface Deformation Analysis[J].Pure Appl.Geophys,2007,164(4):637-661[15]Berardino P.A New Algorithm for Surface Deform-ation Monitoring Based on Small Baseline Differenti-al SAR Interferograms[J].IEEE Transactions Geo-science and Remote Sensing,2002,40:2375-2383[16]Usai S.A Least Squares Database Approach forSAR Interferometry Data[J].IEEE Transactionson Geoscience and Remote Sensing,2003,41:753-760[17]Li Z,Fielding E J,Cross P.Integration of InSAR949武 汉 大 学 学 报 · 信 息 科 学 版2014年8月Time-series Analysis and Water-vapor Correctionfor Mapping Postseismic Motion After the 2003Bam(Iran)Earthquake[J].IEEE Trans.Geosci.Remote Sens,2009,47(9):3220-3230[18]Li Z,Fielding E J,Cross P,et al.InterferometricSynthetic Aperture Radar Atmospheric Correction:GPS Topography-dependent Turbulence Model[J].J Geophys Res,2006,111(B2):B02404[19]Hanssen R,Feijt A.A First Quantitative Evalua-tion of Atmospheric Effects on SAR Interferometry[C].Fringe 96’Workshop on ERS SAR Interfer-ometry,Switzerland,1996[20]Goldstein R M.Atmospheric Limitations to Repeat-track Radar Interferometry[J].Geophy Res Lett,1995,22:2517-2520[21]Hooper A.A Multi-temporal InSAR Method Incor-porating Both Persistent Scatterer and Small Base-line Approaches[J].Geophys Res Lett,2008,35:L16302[22]Hooper A,Zebker H A.Phase Unwrapping inThree Dimensions with Application to InSAR TimeSeries[J].J Opt Soc Am.A:Opt.Image Sci.Vis.,2010,24(9):2737-2747[23]Hooper A,Spaans K,Bekaert D,et al.Stamps/MTI Manual[D].Delft:Delft University of Tech-nology[24]Geological Environment Monitoring Center ofShanxi Province.Ground Fissure Exploration Re-port for Datong City[R].Shangxi:Geological Envi-ronment Monitoring Center of Shanxi Province,2006(山西省地质环境监测中心.山西省大同市地裂缝勘查报告[R].山西:山西省地质环境监测中心,2006)
  • Related Articles

    [1]ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273
    [2]GENG Jianghui, YAN Zhe, WEN Qiang. Multi-GNSS Satellite Clock and Bias Product Combination: The Third IGS Reprocessing Campaign[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1070-1081. DOI: 10.13203/j.whugis20230071
    [3]LIU Mingliang, AN Jiachun, WANG Zemin, ZHANG Baojun, SONG Xiangyu. Performance Analysis of BDS-3 Multi-frequency Pseudorange Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 902-910. DOI: 10.13203/j.whugis20200714
    [4]YUAN Haijun, ZHANG Zhetao, HE Xiufeng, XU Tianyang, XU Xueyong. Stability Analysis of BDS-3 Satellite Differential Code Bias and Its Impacts on Single Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 425-432. DOI: 10.13203/j.whugis20200517
    [5]ZHOU Ren-yu, HU Zhi-gang, CAI Hong-liang, ZHAO Zhen, RAO Yong-nan, CHEN Liang, ZHAO Qi-le. Analysis of Pseudorange and Carrier Ranging Deviation of BDS-3 Using Parabolic Directional Antenna[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1298-1308. DOI: 10.13203/j.whugis20200182
    [6]ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119
    [7]ZOU Xuan, LI Zongnan, CHEN Liang, LI Min, TANG Weiming, SHI Chuang. Modeling BeiDou IGSO and MEO Satellites Code Pseudorange Variations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1661-1666. DOI: 10.13203/j.whugis20160275
    [8]LI Xin, ZHANG Xiaohong, ZENG Qi, PAN Lin, ZHU Feng. The Estimation of BeiDou Satellite-induced Code Bias and Its Impact on the Precise Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1461-1467. DOI: 10.13203/j.whugis20160062
    [9]LOU Yidong, GONG Xiaopeng, GU Shengfeng, ZHENG Fu, YI Wenting. The Characteristic and Effect of Code Bias Variations of BeiDou[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1040-1046. DOI: 10.13203/j.whugis20150107
    [10]FAN Lei, ZHONG Shiming, LI Zishen, OU Jikun. Effect of Tracking Stations Distribution on the Estimation of Differential Code Biases by GPS Satellites Based on Uncombined Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 316-321. DOI: 10.13203/j.whugis20140114
  • Cited by

    Periodical cited type(28)

    1. 吕峥,孙群,温伯威,张付兵,马京振. 顾及形状相似性的道路与居民地协同化简方法. 地球信息科学学报. 2024(05): 1270-1282 .
    2. 铁占琦. 利用改进的Hausdorff距离匹配多尺度线要素. 地理空间信息. 2024(05): 62-65 .
    3. 王庆社,王雅欣,姜青香,郭思慧. “天地图·北京”多源道路数据融合关键技术研究. 北京测绘. 2024(06): 874-879 .
    4. 陈钉均,梁芮嘉. 基于特征聚类驾驶员服从度跟驰模型参数标定. 计算机仿真. 2024(10): 126-132 .
    5. 齐杰,王中辉,李驿言. 基于图卷积神经网络的道路网匹配. 测绘通报. 2023(12): 19-24+44 .
    6. 吴冰娇,王中辉,杨飞. 用于多尺度道路网匹配的语义相似性计算模型. 测绘科学. 2022(03): 166-173 .
    7. 蒋阳升,俞高赏,胡路,李衍. 基于聚类站点客流公共特征的轨道交通车站精细分类. 交通运输系统工程与信息. 2022(04): 106-112 .
    8. 周秀华,李乃强. 基于多种相似度特征的道路实体融合方法. 测绘通报. 2021(08): 102-105+157 .
    9. 秦育罗,宋伟东,张在岩,孙小荣. 顾及几何特征和拓扑连续性的道路网匹配方法. 测绘通报. 2021(08): 55-60 .
    10. 杨飞,王中辉. 河系几何相似性的层次度量方法. 地球信息科学学报. 2021(12): 2139-2150 .
    11. 程绵绵,孙群,季晓林,赵云鹏. 改进平均Fréchet距离法及在化简评价中的应用. 测绘科学. 2020(03): 170-177 .
    12. 赵元棣,田英杰,吴佳馨. 航空器飞行轨迹相似性度量及聚类分析. 中国科技论文. 2020(02): 249-254 .
    13. Wenyue GUO,Anzhu YU,Qun SUN,Shaomei LI,Qing XU,Bowei WEN,Yuanfu LI. A Multisource Contour Matching Method Considering the Similarity of Geometric Features. Journal of Geodesy and Geoinformation Science. 2020(03): 76-87 .
    14. 秦育罗,郭冰,孙小荣. 改进Hausdorff距离及其在多尺度道路网匹配中的应用. 测绘科学技术学报. 2020(03): 313-318 .
    15. 郝志伟,李成名,殷勇,武鹏达,吴伟. 一种基于Fréchet距离的断裂等高线内插算法. 测绘通报. 2019(01): 65-68+74 .
    16. 郭文月,刘海砚,孙群,余岸竹,丁梓越. 顾及几何特征相似性的多源等高线匹配方法. 测绘学报. 2019(05): 643-653 .
    17. 宗琴,彭荃,秦万英. 一种基于模糊矩阵的空间面对象相似性度量算法. 北京测绘. 2019(10): 1218-1221 .
    18. 李兆兴,翟京生,武芳. 线要素综合的形状相似性评价方法. 武汉大学学报(信息科学版). 2019(12): 1859-1864 .
    19. 周家新,陈建勇,单志超,陈长康. 航空磁探中潜艇目标的联合估计检测方法研究. 兵工学报. 2018(05): 833-840 .
    20. 郭宁宁,盛业华,吕海洋,黄宝群,张思阳. 径向基函数神经网络的路网自动匹配算法. 测绘科学. 2018(03): 45-50 .
    21. 张瀚,李静,吕品,徐永志,刘格林. 六角格网的弧线矢量数据量化拟合方法. 计算机辅助设计与图形学学报. 2018(04): 557-567 .
    22. 邵世维,刘辉,肖立霞,王恒. 一种基于Fréchet距离的复杂线状要素匹配方法. 武汉大学学报(信息科学版). 2018(04): 516-521 .
    23. 苏满佳,张逸鸿,谢荣臻,朱海飞,管贻生,毛世鑫. 连续软体机器人的结构范型与形态复现. 机器人. 2018(05): 640-647+672 .
    24. 宗琴,姜树辉,刘艳霞. 多尺度矢量地图中模糊相似变换及其度量模型. 测绘科学. 2018(11): 72-78 .
    25. 郭文月,刘海砚,孙群,余岸竹,季晓林. 利用最长公共子序列度量线要素相似性的方法. 测绘科学技术学报. 2018(05): 518-523 .
    26. 郭宁宁,盛业华,黄宝群,吕海洋,张思阳. 基于人工神经网络的多特征因子路网匹配算法. 地球信息科学学报. 2016(09): 1153-1159 .
    27. 杨亚辉. 利用几何相似性快速测量鱼重的数学模型. 电子技术与软件工程. 2016(20): 182-183 .
    28. 逯跃锋,张奎,刘硕,吴跃,赵硕,李强,冯晨. 一种基于斜率差和方位角的矢量数据匹配算法. 山东大学学报(工学版). 2016(06): 31-39 .

    Other cited types(30)

Catalog

    Article views PDF downloads Cited by(58)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return