Citation: | WU Xueling, SHEN Shaoqing, NIU Ruiqing. Landslide Susceptibility Prediction Using GIS and PSO-SVM[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 665-671. DOI: 10.13203/j.whugis20130566 |
[1] |
Chen Deji, Man Zuowu. The Research and Demonstration of Some Major Geological Problems of Three Gorges Project[J]. Engineering Sciences, 2011, 13(7):43-50(陈德基, 满作武. 三峡工程几个重大地质问题的研究与论证[J]. 中国工程科学, 2011, 13(7):43-50)
|
[2] |
Zheng Shouren. Some Considerations on Trial Impoundment Operation of Three Gorges Project at 175 m Water Level[J]. Yangtze River, 2010, 41(8):1-4(郑守仁. 三峡工程试验性蓄水175 m水位运行的相关问题[J]. 人民长江, 2010, 41(8):1-4)
|
[3] |
Huang S, Luo L. Stability Analysis and Results of the Landslide Monitoring Datum in the Three Gorges Reservoir Area[J]. Geomatics and Information Science of Wuhan University, 2014,39(3):367-372(黄声享, 罗力. 三峡库区滑坡监测基准的稳定性分析及结果[J]. 武汉大学学报·信息科学版, 2014,39(3):367-372)
|
[4] |
He S W, Pan P, Dai L, et al. Application of Kernel-based Fisher Discriminant Analysis to Map Landslide Susceptibility in the Qinggan River Delta, Three Gorges, China[J]. Geomorphology, 2012, 171/172:30-41
|
[5] |
Niethammer U, James M R, Rothmund S, et al. UAV-based Remote Sensing of the Super-Sauze Landslide:Evaluation and results[J]. Eng Geol, 2012, 128:2-11
|
[6] |
Gong J H, Yue Y J, Zhu J, et al. Impacts of the Wenchuan Earthquake on the Chaping River Upstream Channel Change[J]. Int J Remote Sens, 2012, 33(12):3907-3929
|
[7] |
Pradhan B. Landslide Susceptibility Mapping of a Catchment Area Using Frequency Ratio, Fuzzy Logic and Multivariate Logistic Regression Approaches[J]. J Indian Soc Remote Sens, 2010,38(2):301-320
|
[8] |
Zare M, Pourghasemi H R, Vafakhah M, et al. Landslide Susceptibility Mapping at Vaz Watershed (Iran) Using an Artificial Neural Network Model:A Comparison Between Multilayer Perceptron (MLP) and Radial Basic Function (RBF) Algorithms[J]. Arab J Geosci, 2013, 6(8):2873-2888
|
[9] |
Bui D T, Lofman O, Revhaug I, et al. Landslide Susceptibility Analysis in the Hoa Binh Province of Vietnam Using Statistical Index and Logistic Regression[J]. Nat Hazards, 2011, 59:1413-1444
|
[10] |
Wu Xueling, Ren Fu, Niu Ruiqing. Spatial Intelligent Prediction of Landslide Hazard Based on Multi-source Data in Three Gorges Reservoir Area[J]. Geomatics and Information Science of Wuhan University, 2013,38(8):963-968(武雪玲, 任福, 牛瑞卿. 多源数据支持下的三峡库区滑坡灾害空间智能预测[J]. 武汉大学学报·信息科学版, 2013,38(8):963-968)
|
[11] |
Pradhan B. A Comparative Study on the Predictive Ability of the Decision Tree, Support Vector Machine and Neuro-Fuzzy Models in Landslide Susceptibility Mapping Using GIS[J]. Comput Geosci, 2013, 51:350-365
|
[12] |
Wu Xueling, Ren Fu, Niu Ruiqing, et al. Landslide Spatial Prediction Based on Slope Units and Support Vector Machines[J]. Geomatics and Information Science of Wuhan University, 2013,38(12):1499-1503(武雪玲, 任福, 牛瑞卿, 等. 斜坡单元支持下的滑坡易发性评价支持向量机模型[J]. 武汉大学学报·信息科学版, 2013,38(12):1499-1503)
|
[13] |
Xu C, Dai F C, Xu X W, et al. GIS-Based Support Vector Machine Modeling of Earthquake-Triggered Landslide Susceptibility in the Jianjiang River Watershed, China[J]. Geomorphology, 2012, 145:70-80
|
[14] |
Ballabio C, Sterlacchini S. Support Vector Machines for Landslide Susceptibility Mapping:The Staffora River Basin Case Study, Italy[J]. Math Geosci, 2012, 44:47-70
|
[15] |
Vapnik V. Nature of Statistical Learning Theory[M]. New York:Wiley, 1995
|
[16] |
Yao X,Tham L G, Dai F C. Landslide Susceptibility Mapping Based on Support Vector Machine:A Case Study on Natural Slopes of Hong Kong, China[J]. Geomorphology, 2008, 101:572-582
|
[17] |
Wu X, Ren F,Niu R. Landslide Susceptibility Assessment Using Object Mapping Units, Decision Tree, and Support Vector Machine Models in the Three Gorges of China[J]. Environ Earth Sci, 2014, 71:4725-4738
|
[18] |
Kennedy J,Eberhart R C. Particle Swarm Optimization[C]. IEEE Int Conf Neural Netw, New York, 1995
|
[19] |
Pradhan B, Lee S. Landslide Susceptibility Assessment and Factor Effect Analysis:Backpropagation Artificial Neural Networks and Their Comparison with Frequency Ratio and Bivariate Logistic Regression Modeling[J]. Environ Modell Softw, 2010, 25:747-759
|
[20] |
Nandi A. A Application of Logistic Regression Model for Slope Instability Prediction in Cuyahoga River Watershed, Ohio, USA[J]. Georisk, 2008, 2(1):16-27
|