WU Xueling, SHEN Shaoqing, NIU Ruiqing. Landslide Susceptibility Prediction Using GIS and PSO-SVM[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 665-671. DOI: 10.13203/j.whugis20130566
Citation: WU Xueling, SHEN Shaoqing, NIU Ruiqing. Landslide Susceptibility Prediction Using GIS and PSO-SVM[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 665-671. DOI: 10.13203/j.whugis20130566

Landslide Susceptibility Prediction Using GIS and PSO-SVM

Funds: The National Natural Science Foundation of China, No.41501470; Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, the Ministry of Land and Resources, No.KF-2015-01-006; State Key Laboratory of Resources and Environmental Information System.
More Information
  • Received Date: August 24, 2015
  • Published Date: May 04, 2016
  • Landslide susceptibility prediction is the key technology in landslide monitoring, early warning, and assessment. The core problem in quantitative prediction of landslide hazards is the effective selection of conditioning factors and prediction models. In this paper, the Three Gorges Reservoir area was selected as a case study to predict landslide susceptibility. First, key landslide-related factors were selected as input variables using topographic, geological, and remote sensing data. Secondly, according to the nonlinear and uncertainty characteristics of landslides, a PSO-SVM model was trained and used to assess landslide susceptibility. Finally, the prediction results of grid-and object-based prediction models were validated by comparing them with known landslides using the classification accuracy. The results show that object-based PSO-SVM possesses high prediction accuracy with the area under curve of 0.841 5 and a Kappa coefficient of 0.849 0. These experimental results are consistent with field investigations and can provide a reference for landslide prevention and reduction in the Three Gorges, China.
  • [1]
    Chen Deji, Man Zuowu. The Research and Demonstration of Some Major Geological Problems of Three Gorges Project[J]. Engineering Sciences, 2011, 13(7):43-50(陈德基, 满作武. 三峡工程几个重大地质问题的研究与论证[J]. 中国工程科学, 2011, 13(7):43-50)
    [2]
    Zheng Shouren. Some Considerations on Trial Impoundment Operation of Three Gorges Project at 175 m Water Level[J]. Yangtze River, 2010, 41(8):1-4(郑守仁. 三峡工程试验性蓄水175 m水位运行的相关问题[J]. 人民长江, 2010, 41(8):1-4)
    [3]
    Huang S, Luo L. Stability Analysis and Results of the Landslide Monitoring Datum in the Three Gorges Reservoir Area[J]. Geomatics and Information Science of Wuhan University, 2014,39(3):367-372(黄声享, 罗力. 三峡库区滑坡监测基准的稳定性分析及结果[J]. 武汉大学学报·信息科学版, 2014,39(3):367-372)
    [4]
    He S W, Pan P, Dai L, et al. Application of Kernel-based Fisher Discriminant Analysis to Map Landslide Susceptibility in the Qinggan River Delta, Three Gorges, China[J]. Geomorphology, 2012, 171/172:30-41
    [5]
    Niethammer U, James M R, Rothmund S, et al. UAV-based Remote Sensing of the Super-Sauze Landslide:Evaluation and results[J]. Eng Geol, 2012, 128:2-11
    [6]
    Gong J H, Yue Y J, Zhu J, et al. Impacts of the Wenchuan Earthquake on the Chaping River Upstream Channel Change[J]. Int J Remote Sens, 2012, 33(12):3907-3929
    [7]
    Pradhan B. Landslide Susceptibility Mapping of a Catchment Area Using Frequency Ratio, Fuzzy Logic and Multivariate Logistic Regression Approaches[J]. J Indian Soc Remote Sens, 2010,38(2):301-320
    [8]
    Zare M, Pourghasemi H R, Vafakhah M, et al. Landslide Susceptibility Mapping at Vaz Watershed (Iran) Using an Artificial Neural Network Model:A Comparison Between Multilayer Perceptron (MLP) and Radial Basic Function (RBF) Algorithms[J]. Arab J Geosci, 2013, 6(8):2873-2888
    [9]
    Bui D T, Lofman O, Revhaug I, et al. Landslide Susceptibility Analysis in the Hoa Binh Province of Vietnam Using Statistical Index and Logistic Regression[J]. Nat Hazards, 2011, 59:1413-1444
    [10]
    Wu Xueling, Ren Fu, Niu Ruiqing. Spatial Intelligent Prediction of Landslide Hazard Based on Multi-source Data in Three Gorges Reservoir Area[J]. Geomatics and Information Science of Wuhan University, 2013,38(8):963-968(武雪玲, 任福, 牛瑞卿. 多源数据支持下的三峡库区滑坡灾害空间智能预测[J]. 武汉大学学报·信息科学版, 2013,38(8):963-968)
    [11]
    Pradhan B. A Comparative Study on the Predictive Ability of the Decision Tree, Support Vector Machine and Neuro-Fuzzy Models in Landslide Susceptibility Mapping Using GIS[J]. Comput Geosci, 2013, 51:350-365
    [12]
    Wu Xueling, Ren Fu, Niu Ruiqing, et al. Landslide Spatial Prediction Based on Slope Units and Support Vector Machines[J]. Geomatics and Information Science of Wuhan University, 2013,38(12):1499-1503(武雪玲, 任福, 牛瑞卿, 等. 斜坡单元支持下的滑坡易发性评价支持向量机模型[J]. 武汉大学学报·信息科学版, 2013,38(12):1499-1503)
    [13]
    Xu C, Dai F C, Xu X W, et al. GIS-Based Support Vector Machine Modeling of Earthquake-Triggered Landslide Susceptibility in the Jianjiang River Watershed, China[J]. Geomorphology, 2012, 145:70-80
    [14]
    Ballabio C, Sterlacchini S. Support Vector Machines for Landslide Susceptibility Mapping:The Staffora River Basin Case Study, Italy[J]. Math Geosci, 2012, 44:47-70
    [15]
    Vapnik V. Nature of Statistical Learning Theory[M]. New York:Wiley, 1995
    [16]
    Yao X,Tham L G, Dai F C. Landslide Susceptibility Mapping Based on Support Vector Machine:A Case Study on Natural Slopes of Hong Kong, China[J]. Geomorphology, 2008, 101:572-582
    [17]
    Wu X, Ren F,Niu R. Landslide Susceptibility Assessment Using Object Mapping Units, Decision Tree, and Support Vector Machine Models in the Three Gorges of China[J]. Environ Earth Sci, 2014, 71:4725-4738
    [18]
    Kennedy J,Eberhart R C. Particle Swarm Optimization[C]. IEEE Int Conf Neural Netw, New York, 1995
    [19]
    Pradhan B, Lee S. Landslide Susceptibility Assessment and Factor Effect Analysis:Backpropagation Artificial Neural Networks and Their Comparison with Frequency Ratio and Bivariate Logistic Regression Modeling[J]. Environ Modell Softw, 2010, 25:747-759
    [20]
    Nandi A. A Application of Logistic Regression Model for Slope Instability Prediction in Cuyahoga River Watershed, Ohio, USA[J]. Georisk, 2008, 2(1):16-27
  • Cited by

    Periodical cited type(49)

    1. 徐文正,卢书强,林振,周王敏. 联合InSAR与神经网络的范家坪滑坡形变监测及预测研究. 水文地质工程地质. 2025(02): 150-163 .
    2. 黄发明,刘科技,曾子强,田钦,蒋水华,杨阳,周创兵. 环境因子筛选及组合方法对滑坡易发性预测的影响规律. 应用基础与工程科学学报. 2024(01): 49-71 .
    3. 邓日朗,张庆华,刘伟,陈凌伟,谭建辉,高泽茂,郑先昌. 基于改进两步法采样策略和卷积神经网络的崩塌易发性评价. 地质科技通报. 2024(02): 186-200 .
    4. 严天笑,张建通,朱月琴,刘浩然,朱浩濛. 增量学习在滑坡易发性评价中的应用——以甘肃省天水市为例. 地质通报. 2024(04): 630-640 .
    5. 陈力,丁雨淋,朱庆,曾浩炜,张利国,刘飞. 基于元学习的广域范围滑坡易发性小样本预测. 武汉大学学报(信息科学版). 2024(08): 1367-1376 .
    6. 刘雅婷,陈传法. 顾及空间异质性和特征优选的滑坡易发性评价方法. 测绘学报. 2024(07): 1417-1428 .
    7. 付泉,党光普,李致博,田润青,石琳,赵鑫,王昆,石磊,吕娜娜. 基于分形维数耦合支持向量机和熵权模型的滑坡易发性研究. 西北地质. 2024(06): 255-267 .
    8. 张越,宋炜炜. 基于BP神经网络和决策树的昆明市东川区滑坡空间易发性评价. 国土与自然资源研究. 2023(02): 67-70 .
    9. 李益敏,李盈盈,李驭豪,赵志芳. 基于GIS的瑞丽市地质灾害易发性研究. 四川地质学报. 2023(01): 141-146 .
    10. 何万才,赵俊三,林伊琳,陈国平,李坤,姚皖路. 基于证据权和支持向量机模型的威信县滑坡易发性评价. 科学技术与工程. 2023(15): 6350-6360 .
    11. 李益敏,邓选伦,谢亚亚,李盈盈,蒋文学. 基于信息量–逻辑回归模型的怒江州滑坡灾害易发性评价. 时空信息学报. 2023(01): 77-85 .
    12. 黄敏. 基于FR的多种机器学习模型在地质灾害易发性评价中的对比分析. 福建地质. 2023(03): 236-243 .
    13. 吴巍炜,吴雄辉. 基于OCSVM-RF耦合模型的雅江县地质灾害易发性评价. 四川建材. 2023(10): 75-77 .
    14. 解明礼,巨能攀,赵建军,范强,何朝阳. 多因子组合的地质灾害易发性空间精度验证. 中国地质灾害与防治学报. 2023(05): 10-19 .
    15. 吴宏阳,周超,梁鑫,袁鹏程,余蓝冰. 基于XGBoost模型的三峡库区燕山乡滑坡易发性评价与区划. 中国地质灾害与防治学报. 2023(05): 141-152 .
    16. 周宇,常鸣,孙文静,武彬彬. 基于改进证据权重法的北海道地震同震滑坡易发性评价. 地理与地理信息科学. 2022(01): 138-144 .
    17. 何书,鲜木斯艳·阿布迪克依木,胡萌,陈康. 基于自组织特征映射网络-随机森林模型的滑坡易发性评价——以江西大余县为例. 中国地质灾害与防治学报. 2022(01): 132-140 .
    18. 彭博荣,彭仪普,孟非,谭桢耀,王萍淋. 长株潭城际铁路沉降预测模型比较与基于Revit的可视化. 铁道科学与工程学报. 2022(02): 391-398 .
    19. 范雅婕,范宣梅,方成勇. 基于栅格最大值法的县域综合地质灾害建模. 地质科技通报. 2022(02): 197-208 .
    20. 杨创奇,陶攀,杨正. 基于逻辑回归树耦合熵指数模型的滑坡易发性分区——以陕西省延安市吴起县滑坡为例. 人民长江. 2022(05): 128-134 .
    21. 晏晓红,宋丽,荣延祥. PSO-SVR优化模型在基坑变形监测预测中的应用. 地理空间信息. 2022(12): 53-57 .
    22. 屈新星,李道安,何云玲,余岚,闫文波. 基于MaxEnt模型的滑坡易发性评价——以攀枝花市为例. 水土保持研究. 2021(02): 224-229 .
    23. 安北,蒋亚楠,曾启菲. 基于灰色关联分析联合VMD-SES-BP模型的滑坡位移预测. 人民珠江. 2021(01): 34-40 .
    24. 吴润泽,胡旭东,梅红波,贺金勇,杨建英. 基于随机森林的滑坡空间易发性评价:以三峡库区湖北段为例. 地球科学. 2021(01): 321-330 .
    25. 王念秦,朱文博,郭有金. 基于PSO-SVM模型的滑坡易发性评价. 长江科学院院报. 2021(04): 56-62 .
    26. 解明礼,巨能攀,赵建军,范强,何朝阳. 区域地质灾害易发性分级方法对比分析研究. 武汉大学学报(信息科学版). 2021(07): 1003-1014 .
    27. 刘璐瑶,高惠瑛,李照. 基于CF与Logistic回归模型耦合的永嘉县滑坡易发性评价. 中国海洋大学学报(自然科学版). 2021(10): 121-129 .
    28. 刘婷,谭建民,郭飞,潘宇晨,王力. 人工切坡下滑坡易发性评价中权重修正方法研究——以赣州市沙地镇为例. 自然灾害学报. 2021(05): 217-225 .
    29. 黄发明,曹昱,范宣梅,李文彬,黄劲松,周创兵,范文彦. 不同滑坡边界及其空间形状对滑坡易发性预测不确定性的影响规律. 岩石力学与工程学报. 2021(S2): 3227-3240 .
    30. 蒋浩鹏,姜谙男. 基于BIM技术的桥梁模型设计及信息处理研究. 重庆交通大学学报(自然科学版). 2021(12): 82-89 .
    31. 刘福臻,王灵,肖东升. 机器学习模型在滑坡易发性评价中的应用. 中国地质灾害与防治学报. 2021(06): 98-106 .
    32. 鲍帅,刘纪平,王亮. 联合DBSCAN聚类采样和SVM分类的滑坡易发性评价. 震灾防御技术. 2021(04): 625-636 .
    33. 解雪,陈军锋,郑秀清,薛静,翟小艳,杜鑫钰,魏一钊. 基于主成分分析和粒子群算法优化支持向量机的冻融土壤蒸发预报模型. 节水灌溉. 2020(01): 61-65+72 .
    34. 高金贺,黄伟玲,蒋浩鹏. 城市交通碳排放预测的多模型对比分析. 重庆交通大学学报(自然科学版). 2020(07): 33-39 .
    35. 田钦,张彪,郭建飞,刘华赞,常志璐,李怡静,黄发明. 基于信息量和逻辑回归耦合模型的滑坡易发性评价. 科学技术与工程. 2020(21): 8460-8468 .
    36. 李利峰,张晓虎,邓慧琳,韩六平. 基于SVM-LR融合模型的滑坡灾害易发性评价——以山阳县为例. 科学技术与工程. 2020(26): 10618-10625 .
    37. 周超,常鸣,徐璐,车宏晓. 贵州省典型城镇矿山地质灾害风险评价. 武汉大学学报(信息科学版). 2020(11): 1782-1791 .
    38. 黄楠,郑禄林,左宇军,林健云,郑禄璟,何珩溢. 基于PCA-Fuzzy-PSO-SVM的巷道围岩稳定性评价. 矿业研究与开发. 2020(12): 75-80 .
    39. 李朝奎,陈建辉,魏振伟,周倩,周访滨. 显式统计预警模型下地质灾害预警方法及应用. 武汉大学学报(信息科学版). 2019(07): 1020-1026 .
    40. 祝杨菲,梁勤欧,林德根. 浙江省滑坡地质灾害风险地图制图综合研究. 国土与自然资源研究. 2019(03): 34-41 .
    41. 陈希鸣,黄张裕,秦洁,刘仁志. 粒子群算法优化的神经网络短期钟差预报. 测绘科学. 2019(09): 7-12 .
    42. 周丽芸,刘锋,赵祈溶,贺晨骋,李胜苗. 基于RS和GIS的皂市水库地质灾害诱发因素分析. 测绘与空间地理信息. 2019(09): 120-122+125 .
    43. 赵金童,牛瑞卿,姚琦,武雪玲. 雷达数据辅助下的滑坡易发性评价. 吉林大学学报(地球科学版). 2018(04): 1182-1191 .
    44. 丁超,冯光财,周玉杉,王会强,杜亚男,陈晨月. 尼泊尔地震触发滑坡识别和雪崩形变分析. 武汉大学学报(信息科学版). 2018(06): 847-853+950 .
    45. 吴迪. 基于PSO-SVM的凤县公路边坡地质灾害空间预测. 中国地质灾害与防治学报. 2018(06): 112-120 .
    46. 周小梅,武雪玲,杜清运,彭瑞. 浙江省滑坡灾害风险性区划信息图谱研究. 地理信息世界. 2017(03): 19-24 .
    47. 唐业旗,杨桂花,刘慧中. 基于优化支持向量机及极限学习机的滑坡变形趋势研究. 河南科学. 2017(07): 1132-1138 .
    48. 叶小岭,顾荣,邓华,陈浩,杨星. 基于WRF模式和PSO-LSSVM的风电场短期风速订正. 电力系统保护与控制. 2017(22): 48-54 .
    49. 孙文兵. 支持向量机在水资源质量分类评价中的应用. 邵阳学院学报(自然科学版). 2016(02): 11-15 .

    Other cited types(51)

Catalog

    Article views (2219) PDF downloads (397) Cited by(100)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return