ZHANG Chunsen, Lv Peiyu, GUO Bingxuan. Based GCP-SGM Algorithm and Its Application in Scene 3D Reconstruction of Archaeological Excavation Site[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1575-1581. DOI: 10.13203/j.whugis20130510
Citation: ZHANG Chunsen, Lv Peiyu, GUO Bingxuan. Based GCP-SGM Algorithm and Its Application in Scene 3D Reconstruction of Archaeological Excavation Site[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1575-1581. DOI: 10.13203/j.whugis20130510

Based GCP-SGM Algorithm and Its Application in Scene 3D Reconstruction of Archaeological Excavation Site

Funds: The Major State Basic Research Development Program of China (973 Program,No.2012CB719904;Surveying and Mapping Geographic Information Public Industry Research Projects,No.210600001;the Project Funding for 2012 of Museum of Qin ShihuangMausoleum.
More Information
  • Received Date: March 22, 2015
  • Published Date: December 04, 2015
  • Aiming at the big scene 3D reconstruction of archaeological excavation site, in the paper, a method which based on photogrammetry and computer vision is put forward with Qinshihuang's acrobatics figurines pits archaeological excavate as example. Getting multi-strip sequence images usednon-metric digital camera,based on the control points laying the bottom of the excavation site, the exterior orientation elements of the image is measured accurately and the feature matching tie points of the images and epipolar image can be acquired by aerial triangulation. On the basis, the SGM (semi-global matching) algorithm with the additional control point constraint is used for stereo dense image matching.The per-pixel dense matching results are calculated by space intersection.at the same time,the dense color three-dimensional point cloud which reflects the cultural relics archaeological excavation site location information is obtained,and to achieve the 3D reconstruction of cultural form in archaeological excavation process. Experimental results show: the method given by this paper can achieve rapid measurement of 3D reconstruction for the big scene of archaeological excavation site, and the orthophoto map which reflects the distribution of cultural relic site is obtained at the same time, The proposed method can provide the accurate distribution of dig site cultural relic and scientific basis in archaeological excavation, survey, site protection planning and so on for related fields studying.
  • [1]
    Liu Jiangtao.3D Laser Scanning Technology in the Application of Archaeological Exploration[D].Beijing:Capital Normal University,2007(刘江涛. 三维激光扫描技术在考古勘探中的应用[D]. 北京:首都师范大学,2007)
    [2]
    Wei Wei,Qian Wei.Review on the Application of 3D Laser Scanning in Conservation and Archaeology[J]. Sciences of Conservation and Archaeology, 2013,25(1):96-107(魏薇, 潜伟. 三维激光扫描在文物考古中应用述评[J]. 考古技术与应用,2013,25(1):96-107)
    [3]
    Feng Enxue.The Field of Archaeology[M]. Changchun:Jilin University Press,2008(冯恩学. 田野考古学[M]. 长春:吉林大学出版社,2008)
    [4]
    Scharstein D, Szeliski R. A Taxonomy and Evaluation of Dense Two-frame Stereo Correspondence Algorithms[J]. International Journal of Computer Vision,2001,47(1):7-42
    [5]
    Hirschmüller H, Scharstein D. Evaluation of Stereo Matching Costs on Images with Radiometric Differences[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009,31(9) :1 528-1 599
    [6]
    Hirschmüller H. Stereo Vision in Structured Environments by Consistent Semi-global Matching[C]. IEEE Computer Conference on Computer Vision and Pattern Recognition (CVPR'06), New York, USA,2006
    [7]
    Gao Bo. Research on 3D Scene Reconstruction from Binocular Stereo Pairs─Semi-global Stereo Matching Algorithm Combined with Structure Constraint[D]. Shanghai :Shanghai Jiaotong University,2007(高波. 从双目立体图像中恢复三维信息的研究——加入结构约束的半全局匹配算法的研究与实现[D].上海:上海交通大学,2007)
    [8]
    Hirschmüller H, Bucher T. Evaluation of Digital Surface Models by Semi-global Matching[J]. DGPF, 2010,19:571-580
    [9]
    Hirschmüller H. Accurate and Efficient Stereo Processing by Semi-global Matching and Mutual Information[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR'05), San Diego, CA, USA,2005
    [10]
    Hirschmüller H. Stereo Processing by Semi-global Matching and Mutual Information[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2008,30(2):328-341
    [11]
    Lv Peiyu.Research on Segment-based Dense Matching Algorithm and Its Realization in UAV Images[D]. Xi'an: Xi'an University of Science and Technology,2013(吕佩育. 基于影像分割的无人机影像密集匹配算法研究与应用[D]. 西安:西安科技大学,2013)
    [12]
    Hu Xiaoyan, Mordohai P. A Quantitative Evaluation of Confidence Measures for Stereo Vision[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,34(11): 2 121-2 133
    [13]
    Mei X, Sun X, Zhou M, et al. On Building an Accurate Stereo Matching System on Graphics Hardware[C]. IEEE International Conference on Computer Vision Workshops(ICCV 2011),Spain,2011
    [14]
    Yang Q,Wang L, Yang R,et al. Stereo Matching with Color-weighted Correlation, Hierarchical Belief Propagation and Occlusion Handling[J]. IEEE TPAMI, 2009,31(3):492-504
    [15]
    Pan Fei. Research on Control Point Constraints-Based Dense Matching Algorithm and Its Realization in UAV Images[D]. Wuhan :Wuhan University,2012(潘飞. 基于控制点约束的无人机影像密集匹配算法研究与应用[D]. 武汉:武汉大学,2012)
    [16]
    Zhang Chunsen, Guo Bingxuan, Lv Peiyu. Application of Digital Close-range Photogrammetry During Archaeological Excavation of the Acrobatic Figurines Pit at the Qinshihuang Mausoleum Site[J]. Sciences of Conservation and Archaeology, 2014,26(2):90-95(张春森, 郭丙轩, 吕佩育. 数字近景摄影测量在秦始皇陵百戏坑考古中的应用研究[J]. 文物保护与考古科学, 2014,26(2):90-95)
    [17]
    Haala N, Hastedt H, Wolf K, et al. Digital Photogrammetric Camera Evaluation-generation of Digital Elevation Models[J]. Photogrammetrie Fernerkundung Geoinformation, 2010,2:99-115
    [18]
    Gao Bo, Ma Lizhuang. Semi-global Stereo Matching Combined with Structure Constraint[J]. Computer Applications and Software, 2009,26(2):90-95(高波,马利庄. 加入结构约束的半全局立体匹配方法[J]. 计算机应用与软件,2009,26(2):90-95)
  • Related Articles

    [1]LIANG Long, GONG Adu, SUN Yanzhong, CHEN Yunhao. Seasonal Rainstorm and Flood Risk Assessment Method for Immovable Cultural Relics[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 1978-1989. DOI: 10.13203/j.whugis20200600
    [2]LIU Tingting, YANG Zijian, WANG Zemin, GAO Kefu. Evaluation of Arctic Sea Ice Concentration Estimated by Fengyun-3D Microwave Radiation Imager[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1843-1851. DOI: 10.13203/j.whugis20210449
    [3]WANG Weiqi, YOU Xiong, YANG Jian, LI Qin. ElasticFusion for Indoor 3D Reconstruction with an Improved Matching Points Selection Strategy[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1469-1477. DOI: 10.13203/j.whugis20180278
    [4]ZHANG Chunsen, ZHANG Menghui, GUO Bingxuan, PENG Zhe. Adaptive Fast Mesh Refinement of 3D Reconstruction Based on Image Information[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 411-418. DOI: 10.13203/j.whugis20190161
    [5]Zheng Shunyi, Wang Xiaonan, Ma Dian. A Convenient 3D Reconstruction Method of Small Objects[J]. Geomatics and Information Science of Wuhan University, 2015, 40(2): 147-152+158.
    [6]YING Shen, MAO Zhengyuan, LI Lin, XU Guang. Point Cloud Segmentation of 3D Rabbit Base 3D Voronoi[J]. Geomatics and Information Science of Wuhan University, 2013, 38(3): 358-361.
    [7]GUO Fenglin, HU Peng, BAI Yiduo, WANG Yuping. Pseudo 3D Visualization Design in Mobile Maps[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 79-82.
    [8]ZHENG Shunyi, DENG Deyan. 3D Reconstruction Based on Seamless Contiguity of TIN[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 15-18.
    [9]ZHAO Xu, ZHOU Keqin, YAN Li, DENG Fei. 3D Reconstruction Method for Large Scale Relic Landscape from Laser Point Cloud[J]. Geomatics and Information Science of Wuhan University, 2008, 33(7): 684-687.
    [10]TANG Min, ZHANG Zuxun, ZHANG Jianqing. 3D Reconstruction and Inspection of Industrial Sheet Metal Parts with Multiple Baseline Images Based on Generalized Point Photogrammetry Theory[J]. Geomatics and Information Science of Wuhan University, 2007, 32(12): 1095-1098.
  • Cited by

    Periodical cited type(6)

    1. 王淑香,官恺,刘智,牛泽璇,金飞,林雨准. 一种半稠密视差图修补的深度学习半监督方法. 测绘科学技术学报. 2024(06): 627-634 .
    2. Xingbin YANG,Jingguo LYU,Shan JIANG,Danlu ZHANG. High-resolution Remote Sensing Image Semi-global Matching Method Considering Geometric Constraints of Connection Points and Image Texture Information. Journal of Geodesy and Geoinformation Science. 2022(04): 86-101 .
    3. 李文,刘德儿,王有毅,刘鹏,施贵刚. 基于超体素的区域聚类的复杂场景分割. 激光与红外. 2021(11): 1425-1432 .
    4. Jingguo LV,Xingbin YANG,Danlu ZHANG,Shan JIANG. High-resolution Remote Sensing Image Semi-global Matching Method Considering Geometric Constraints of Connection Points and Image Texture Information. Journal of Geodesy and Geoinformation Science. 2021(04): 97-112 .
    5. 杨幸彬,吕京国,江珊,张丹璐. 高分辨率遥感影像DSM的改进半全局匹配生成方法. 测绘学报. 2018(10): 1372-1384 .
    6. 何成战,刘凯. 广西文物影像信息采集标准与规范探析. 柳州职业技术学院学报. 2018(06): 105-108 .

    Other cited types(7)

Catalog

    Article views (1532) PDF downloads (937) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return