LU Hao, PANG Yong, XU Guangcai, LI Zengyuan. Quantitative Analysis of Differences Between Full Waveform Data and System Point Cloud Data from Airborne LiDAR[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 588-593. DOI: 10.13203/j.whugis20130443
Citation: LU Hao, PANG Yong, XU Guangcai, LI Zengyuan. Quantitative Analysis of Differences Between Full Waveform Data and System Point Cloud Data from Airborne LiDAR[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 588-593. DOI: 10.13203/j.whugis20130443

Quantitative Analysis of Differences Between Full Waveform Data and System Point Cloud Data from Airborne LiDAR

Funds: The National 973Program of China,Nos.2013CB733404,2013CB733406;the National 863Program of China,No.
More Information
  • Author Bio:

    LU Hao: 国家973计划资助项目(2013CB733404,2013CB733406);国家863计划资助项目(2012AA12A306)

  • Received Date: August 28, 2013
  • Revised Date: May 04, 2015
  • Published Date: May 04, 2015
  • The superiority of waveform data is hard to evaluated and compared with point clouds quan-titatively due to a high correlation between two data sources from the most commonly used LiDARsystems.Leica ALS60airborne LiDAR system can record both of discrete return data and waveformdata simultaneously and independently.The raw waveforms are decomposed into individual pulse re-turns and compared with the laser points from the hardware system quantitatively.Data from typicalforest and urban areas are picked to perform a digitized assessment of the capability of waveform.Theresults show that waveform data can increase the vertical information in different types of ground ob-jects and spatial resolution of point cloud at a certain level and that the increment in forest area is high-er than that of urban area and bare earth.It is concluded that the penetration capability of laser pulseis more evident in full waveform data than in point cloud from ALS system itself,and that full wave-form LiDAR has much more potential in constructing the vertical parameters in the forest areas thanoriginal LiDAR with only point clouds.
  • [1]
    Ackmann F.Airborne Laser Scanning-Present Sta-tus and Future Expectations[J].ISPRS Journal ofPhotogrammetry and Remote Sensing,1999,54:64-67[2] Lefsky M A.LiDAR Remote Sensing of the CanopyStructure and Biophysical Properties of Douglas-firwestern Hemlock Forests[J].Remote Sensing ofEnvironment,1999,70(3):339-361[3] Baltsavias E P.A Comparison Between Photogram-metry and Laser Scanning[J].ISPRS Journal ofPhotogrammetry and Remote Sensing,1999,54:83-94[4] Wagner W.Gaussian Decomposition and Calibrationof a Novel Small-Footprint Full-Waveform Digitis-ing Airborne Laser Scanner[J].ISPRS Journal ofPhotogrammetry and Remote Sensing,2006,61:100-112[5] Mallet C.Full-Waveform Topographic Lidar:State-of-the-Art[J].ISPRS Journal of Photogrammetryand Remote Sensing,2009,64:1-16[6] Wagner W.From Single-Pulse to Full WaveformAirborne Laser Scanners:Potential and PracticalChallenges[C].ISPRS Congress,Istanbul,2009[7] IGI Gmb H.LiteMapper 6800User Manual[S].Germany:IGI,2010[8] ASPRS.LAS Specification Version 1.3-R10[S].USA:ASPRS,2010[9] Ma Hongchao,Li Qi.Modified EM Algorithm andIts Application to the Decomposition of Laser Scan-ning Waveform Data[J].Journal of Remote Sens-ing,2009,13(1):35-41[10] Pang Yong,Li Zengyuan,Sun Guoqing,et al.Li-DAR Remote Sensing Technology and Its Applica-tion in Forestry[J].Scientia Silvae Sinicae,2005,41(3):129-136(庞勇,李增元,孙国清,等.激光雷达技术及其在林业上的应用[J].林业科学,2005,41(3):129-136)[11] Pang Yong,Li Zengyuan,Chen Erxue,et al.For-est Height Inversion Using Airborne LiDAR Tech-nology[J].Journal of Remote Sensing,2008,12(1):152-158(庞勇,李增元,陈尔学,等.机载激光雷达平均树高提取研究[J].遥感学报,2008,12(1):152-158)[12] Li Qi,Ma Hongchao.The Study of Point-cloudProduction Method Based on Waveform Laser Scan-ner Data[J].Acta Geodaetica et CartographicaSinica,2008,37(3):349-354(李奇,马洪超.基于激光雷达波形数据的点云产生[J].测绘学报,2008,37(3):349-354)[13] Zhou Mengwei,Liu Qinhuo.Inversion for CropHeight by Small-Footprint-Waveform Airborne Li-DAR[J].Transactionso f the CSAE,2010,26(8):183-188(周梦维,柳钦火.基于机载小光斑全波形LIDAR的作物高度反演[J].农业工程学报,2010,26(8):183-188)[14] Hofton M A,Minster J B,Blair J B.Gaussian De-composition of Laser Altimeter Waveforms[J].IEEE Transactions on Geoscience and Remote Sens-ing,2000,38:1 989-1 996
  • Related Articles

    [1]GUO Jiachun, LIU Yi, SHEN Wenbin, SHI Guigang. Concept Analysis of Map Projection and Its Applications Based on Manifold Mapping Principle[J]. Geomatics and Information Science of Wuhan University, 2024, 49(12): 2313-2322. DOI: 10.13203/j.whugis20230138
    [2]JIAO Chenchen, LI Songlin, LI Houpu, BIAN Shaofeng, ZHONG Yexun. Non‑iterative Algorithm for Calculating the Reference Latitude of Conformal Conic Projection[J]. Geomatics and Information Science of Wuhan University, 2023, 48(2): 301-307. DOI: 10.13203/j.whugis20200301
    [3]ZENG Xiaoniu, LI Xihai, LIU Jihao, NIU Chao, HOU Weijun. Simultaneous Interpolation and Denoising Method for Airborne Gravity Data Based on Improved Projection onto Convex Sets Theory[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1555-1562. DOI: 10.13203/j.whugis20180470
    [4]LIU Wenchao, WEN Chaojiang, BIAN Hongwei, ZHENG Xiaobing. An Improved Method of Polar Ellipsoid Transverse Mercator Projection Based on Double Projection[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1138-1143. DOI: 10.13203/j.whugis20180028
    [5]SUN Weiwei, JIANG Man, LI Weiyue. Band Selection Using Sparse Self-representation for Hyperspectral Imagery[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 441-448. DOI: 10.13203/j.whugis20150052
    [6]LIAO Li, ZHOU Xueqin, LI Qingqing, CHEN Lu, ZHOU Jianzhong. A Dual Iterative Clustering Based Fuzzy Projection Pursuit Clustering Algorithm[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 932-938. DOI: 10.13203/j.whugis20140152
    [7]ZHAO Hu, LI Lin, GONG Jianya. Universal Map Projection Selection[J]. Geomatics and Information Science of Wuhan University, 2010, 35(2): 244-247.
    [8]CHENMi, YIYaohua, LIDeren, QINQianqing. Application of Projection Pursuit Based on Dynamical Evolutionary Algorithm to Anomaly Target Detection in Hyperspectral Images[J]. Geomatics and Information Science of Wuhan University, 2006, 31(1): 55-58.
    [9]Chen Yongqi. Selection of Projection Technique and Reduction of Geodetic Observations for Huge Engineering Project SSC[J]. Geomatics and Information Science of Wuhan University, 1993, 18(2): 10-14.
    [10]Hu Yuju. The Possibility of Making Further Additions to the Map Projection Classifications——On the Poly-eylindrical Projection[J]. Geomatics and Information Science of Wuhan University, 1986, 11(3): 55-61.
  • Cited by

    Periodical cited type(5)

    1. 李殷娜,李正强,郑杨,侯伟真,徐文斌,马??,樊程,葛邦宇,姚前,史正. 基于非负矩阵分解的中红外地表特性光谱重建方法. 光谱学与光谱分析. 2024(02): 563-570 .
    2. 钟雷洋,周颖,高松,夏吉喆,李珍,李晓明,乐阳,李清泉. 突发公共卫生事件下的人口流动模式变化识别. 武汉大学学报(信息科学版). 2024(07): 1237-1249 .
    3. 李玉,甄畅,石雪,朱磊. 基于波段影像统计信息量加权K-means聚类的高光谱影像分类. 控制与决策. 2021(05): 1119-1126 .
    4. 赵玉英,任明武. 基于SNMF聚类与类间可分性因子的高光谱波段选择. 计算机与数字工程. 2021(09): 1884-1888 .
    5. 曾梦,宁彬,蔡之华,谷琼. 使用深度对抗子空间聚类实现高光谱波段选择. 计算机应用. 2020(02): 381-385 .

    Other cited types(2)

Catalog

    Article views (3763) PDF downloads (1441) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return