ZHANG Hongmei, CHEN Zhigao, ZHAO Jianhu, HUANG Jiayong, WANG Zhenxiang. ADCP Integration Measurement Based on External Sensors[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1131-1136. DOI: 10.13203/j.whugis20130311
Citation: ZHANG Hongmei, CHEN Zhigao, ZHAO Jianhu, HUANG Jiayong, WANG Zhenxiang. ADCP Integration Measurement Based on External Sensors[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1131-1136. DOI: 10.13203/j.whugis20130311

ADCP Integration Measurement Based on External Sensors

Funds: 

The National Natural Science Foundation of China 41176068

The National Natural Science Foundation of China 41376109

The National Natural Science Foundation of China 41576107

More Information
  • Received Date: November 29, 2015
  • Published Date: August 04, 2016
  • Influenced by external magnetic interference, bottom tracking bias due to bedload movement and instrument precision, the accurate azimuth and reference of boat velocity are difficult to establish and even incorrect when measured by a acoustic Doppler current profiler (ADCP), which causes ADCP flow measurement to be invalid and thus limit ADCP application. To overcome the shortcomings of the traditional ADCP measurement, this paper puts forward a new method of high-accuracy ADCP measurement by means of an external sensor array. The assignment of the external sensors such as GPS compass array or fiber optic gyrocompass was studied and the resettlement program determined. Calculation models for parameters such as the installation error of ADCP transducer, the attitude parameters (roll, pitch and heading) of vessel, the absolute vessel velocity and the azimuth of ADCP transducer are provided. Based on these parameters in reference to the ADCP measurement principles, a set of new models for determining ADCP flow velocity by replacing the absolute vessel velocity, azimuth and attitude provided by ADCP with those provided by the external sensors were developed. The proposed method and models are validated by an experiment conducted on the Yangtze Estuary. These experimental results show that this proposed method improves the accuracy of the measurement of flow velocity, and enhances the range of applications for ADCP measurement.
  • [1]
    RDI. Principles of Operation a Practical Primer [M]. San Diego:RD Instruments, 1996
    [2]
    Kinsey J C, Whitcomb L L. Preliminary Field Experience with the DVLNAV Integrated Navigation System for Oceanographic Submersibles [J]. Control Engineering Practice, 2004, 12:1 541-1 548 doi: 10.1016/j.conengprac.2003.12.010
    [3]
    McEwen R, Thomas H, Weber D, et al. Performance of an AUV Navigation System at Arctic latitudes [J]. Journal of Oceanic Engineering, 2005, 30(2): 443-454 doi: 10.1109/JOE.2004.838336
    [4]
    James L H, Johanna H R. Analysis of Bottom-track and Compass Error in a Self-contained Acoustic Doppler Diver Navigation Console [J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(7): 1 229-1 238 doi: 10.1175/2010JTECHO749.1
    [5]
    Oberg K A, Mueller D S. Validation of Streamflow Measurements Made with Acoustic Doppler Current Profilers [J]. Journal of Hydraulic Engineering, 2007, 133(12): 1 421-1 432 doi: 10.1061/(ASCE)0733-9429(2007)133:12(1421)
    [6]
    Rennie C D, Rainville F. A Case Study of Precision of GPS Differential Correction Strategies: Influence on ADCP Velocity and Discharge Estimates [J]. Journal of Hydraulic Engineering, 2006, 132(3): 225-234 doi: 10.1061/(ASCE)0733-9429(2006)132:3(225)
    [7]
    Wagner C R, Mueller D S. Comparison of Bottom-track to Global Positioning System Referenced Discharges Measured Using an Acoustic Doppler Current Profiler [J]. Journal of Hydrology, 2011, 401(3): 250-258 http://cn.bing.com/academic/profile?id=1988682710&encoded=0&v=paper_preview&mkt=zh-cn
    [8]
    Griffiths G. Using 3DF GPS Heading for Improving Underway ADCP Data [J]. Journal of Atmospheric and Oceanic Technology, 1994, 11: 1 135-1 143 doi: 10.1175/1520-0426(1994)011<1135:UGHFIU>2.0.CO;2
    [9]
    Fong D A, Monismith S G. Evaluation of the Accuracy of a Vessel-mounted, Bottom-tracking ADCP in a Near-shore Coastal Flow [J]. Journal of Atmospheric and Oceanic Technology, 2004, 21: 1 121-1 128 doi: 10.1175/1520-0426(2004)021<1121:EOTAOA>2.0.CO;2
    [10]
    张美富, 刘大伟, 王真祥, 等.基于GPS罗经的感潮河段ADCP测验精度研究[J].现代测绘, 2010, 33(6): 32-34 http://www.cnki.com.cn/Article/CJFDTOTAL-JSCH201006012.htm

    Zhang Meifu, Liu Dawei, Wang Zhenxiang, et al. Research on Precision of ADCP Discharge Measurement Using GPS Compass in Tide Reach [J]. Modern Surveying and Mapping, 2010, 33(6): 32-34 http://www.cnki.com.cn/Article/CJFDTOTAL-JSCH201006012.htm
    [11]
    彭万兵, 官学文, 赵东. ADCP与GPS在内河流态测量中的应用问题及对策[J].地理空间信息, 2004, 2(5): 42-44 http://www.cnki.com.cn/Article/CJFDTOTAL-DXKJ200405014.htm

    Peng Wanbing, Guan Xuewen, Zhao Dong. Application of Combined ADCP and GPS Techniques to Inner River' Flowpattern [J]. Geospatial Information, 2004, 2(5): 42-44 http://www.cnki.com.cn/Article/CJFDTOTAL-DXKJ200405014.htm
    [12]
    陈力平, 方波, 季成康.应用GPS技术改正ADCP测量误差[J].人民长江, 2002, 33(1): 36-37 http://www.cnki.com.cn/Article/CJFDTOTAL-RIVE200201016.htm

    Chen Liping, Fang Bo, Ji Chengkang. Application of GPS to Correct ADCP Measurement Error [J]. Yangtze River, 2002, 33(1): 36-37 http://www.cnki.com.cn/Article/CJFDTOTAL-RIVE200201016.htm
    [13]
    吴中, 陈力平, 游目林.底部浮泥表层推移速度分布的ADCP-GPS估测方法[J].海洋工程, 2002, 20(4): 85-88 http://mall.cnki.net/magazine/article/hygc200204014.htm

    Wu Zhong, Chen Liping, You Mulin. ADCP-GPS Surveying Method of Velocity Distribution of Bed Load Movement [J]. The Ocean Engineering, 2002, 20(4): 85-88 http://mall.cnki.net/magazine/article/hygc200204014.htm
    [14]
    Mueller D S, Wagner C R. Measuring Discharge with Acoustic Doppler Current Profilers from a Moving Vessel [R]. US Department of Interior: US Gedogical Survey, 2009
    [15]
    González-Castro J A, Muste M. Framework for Estimating Uncertainty of ADCP Measurements from a Moving Boat by Standardized Uncertainty Analysis [J]. Journal of Hydraulic Engineering, 2007, 133:1 390-1 410 doi: 10.1061/(ASCE)0733-9429(2007)133:12(1390)
    [16]
    崔希璋, 於宗俦, 陶本藻.广义测量平差[M].武汉:武汉大学出版社, 2001
  • Related Articles

    [1]MA Jingzhen, SUN Qun, WEN Bowei, ZHOU Zhao, LU Chuanwei, LÜ Zheng, SUN Shijie. A Hybrid Multi-feature Road Network Selection Method Based on Trajectory Data[J]. Geomatics and Information Science of Wuhan University, 2022, 47(7): 1009-1016. DOI: 10.13203/j.whugis20190480
    [2]YANG Hao, HE Zongyi, CHEN Huayang, ZHOU Zhuanxiang, FAN Yong. A Method for Automatic Generalization of Urban Settlements Considering Road Network[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 965-970. DOI: 10.13203/j.whugis20160094
    [3]CAO Weiwei, ZHANG Hong, HE Jing, LAN Tian. Road Selection Considering Structural and Geometric Properties[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 520-524. DOI: 10.13203/j.whugis20140862
    [4]YANG Lin, WAN Bo, WANG Run, ZUO Zejun, AN Xiaoya. Matching Road Network Based on the Structural Relationship Constraint of Hierarchical Strokes[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1661-1668. DOI: 10.13203/j.whugis20140295
    [5]tianjin g, renchan g, wangyihen g, xiongfu q uan, leiyin g zhe. imp rovementofself-best-fitstrate gyforstrokebuildin g[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9): 1209-1214. DOI: 10.13203/j .whu g is20140455
    [6]LIU Hailong, QIAN Haizhong, WANG Xiao, HE Haiwei. Road Networks Global Matching Method Using Analytical Hierarchy Process[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 644-651. DOI: 10.13203/j.whugis20130350
    [7]TIAN Jing, HE Qingsong, YAN Fen. Formalization and New Algorithm of stroke Generation in Road Networks[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 556-560. DOI: 10.13203/j.whugis20120127
    [8]TIAN Jing, WU Dang, ZHAN Yifei. Degree Correlation of Urban Street Networks[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 332-334. DOI: 10.13203/j.whugis20120675
    [9]CHEN Jun, HU Yungang, ZHAO Renliang, LI Zhilin. Road Data Updating Based on Map Generalization[J]. Geomatics and Information Science of Wuhan University, 2007, 32(11): 1022-1027.
    [10]HUANG Shuqiang, SUN Chengzhi, FU Zhongliang. License Plate Binarization Algorithm Based on the Features of Characters' Strokes[J]. Geomatics and Information Science of Wuhan University, 2003, 28(1): 71-73,79.
  • Cited by

    Periodical cited type(9)

    1. 赵天明,孙群,马京振,张付兵,温伯威. 融合路段和stroke特征的道路自动选取方法. 地球信息科学学报. 2024(12): 2673-2685 .
    2. 郭漩,钱海忠,王骁,刘俊楠,任琰,赵钰哲,陈国庆. 多源道路智能选取的本体知识推理方法. 测绘学报. 2022(02): 279-289 .
    3. 马京振,孙群,温伯威,周炤,陆川伟,吕峥,孙士杰. 结合轨迹数据的混合多特征道路网选取方法. 武汉大学学报(信息科学版). 2022(07): 1009-1016 .
    4. 朱余德,杨敏,晏雄锋. 利用图卷积神经网络的道路网选取方法. 北京测绘. 2022(11): 1455-1459 .
    5. 韩远,王中辉,徐智邦,余贝贝. 结合引力场理论的道路自动选取方法. 测绘科学. 2021(01): 189-195 .
    6. 韩远,王中辉,禄小敏. POI辅助下的道路选取. 测绘科学. 2021(04): 165-171 .
    7. 陈晓东,余劲松弟. 顾及语义关联信息的道路选取方法. 海南大学学报(自然科学版). 2021(03): 227-234 .
    8. 王晓妍. 土地利用图中线状要素综合的质量评价. 测绘通报. 2020(04): 116-120 .
    9. 冯云,朱素华,孙益清,王金鑫. 郑州轨道交通5号线开通对城市交通格局的影响. 城市勘测. 2020(04): 54-58 .

    Other cited types(11)

Catalog

    Article views (1358) PDF downloads (381) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return