ZHANG Hongmei, CHEN Zhigao, ZHAO Jianhu, HUANG Jiayong, WANG Zhenxiang. ADCP Integration Measurement Based on External Sensors[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1131-1136. DOI: 10.13203/j.whugis20130311
Citation: ZHANG Hongmei, CHEN Zhigao, ZHAO Jianhu, HUANG Jiayong, WANG Zhenxiang. ADCP Integration Measurement Based on External Sensors[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1131-1136. DOI: 10.13203/j.whugis20130311

ADCP Integration Measurement Based on External Sensors

Funds: 

The National Natural Science Foundation of China 41176068

The National Natural Science Foundation of China 41376109

The National Natural Science Foundation of China 41576107

More Information
  • Received Date: November 29, 2015
  • Published Date: August 04, 2016
  • Influenced by external magnetic interference, bottom tracking bias due to bedload movement and instrument precision, the accurate azimuth and reference of boat velocity are difficult to establish and even incorrect when measured by a acoustic Doppler current profiler (ADCP), which causes ADCP flow measurement to be invalid and thus limit ADCP application. To overcome the shortcomings of the traditional ADCP measurement, this paper puts forward a new method of high-accuracy ADCP measurement by means of an external sensor array. The assignment of the external sensors such as GPS compass array or fiber optic gyrocompass was studied and the resettlement program determined. Calculation models for parameters such as the installation error of ADCP transducer, the attitude parameters (roll, pitch and heading) of vessel, the absolute vessel velocity and the azimuth of ADCP transducer are provided. Based on these parameters in reference to the ADCP measurement principles, a set of new models for determining ADCP flow velocity by replacing the absolute vessel velocity, azimuth and attitude provided by ADCP with those provided by the external sensors were developed. The proposed method and models are validated by an experiment conducted on the Yangtze Estuary. These experimental results show that this proposed method improves the accuracy of the measurement of flow velocity, and enhances the range of applications for ADCP measurement.
  • [1]
    RDI. Principles of Operation a Practical Primer [M]. San Diego:RD Instruments, 1996
    [2]
    Kinsey J C, Whitcomb L L. Preliminary Field Experience with the DVLNAV Integrated Navigation System for Oceanographic Submersibles [J]. Control Engineering Practice, 2004, 12:1 541-1 548 doi: 10.1016/j.conengprac.2003.12.010
    [3]
    McEwen R, Thomas H, Weber D, et al. Performance of an AUV Navigation System at Arctic latitudes [J]. Journal of Oceanic Engineering, 2005, 30(2): 443-454 doi: 10.1109/JOE.2004.838336
    [4]
    James L H, Johanna H R. Analysis of Bottom-track and Compass Error in a Self-contained Acoustic Doppler Diver Navigation Console [J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(7): 1 229-1 238 doi: 10.1175/2010JTECHO749.1
    [5]
    Oberg K A, Mueller D S. Validation of Streamflow Measurements Made with Acoustic Doppler Current Profilers [J]. Journal of Hydraulic Engineering, 2007, 133(12): 1 421-1 432 doi: 10.1061/(ASCE)0733-9429(2007)133:12(1421)
    [6]
    Rennie C D, Rainville F. A Case Study of Precision of GPS Differential Correction Strategies: Influence on ADCP Velocity and Discharge Estimates [J]. Journal of Hydraulic Engineering, 2006, 132(3): 225-234 doi: 10.1061/(ASCE)0733-9429(2006)132:3(225)
    [7]
    Wagner C R, Mueller D S. Comparison of Bottom-track to Global Positioning System Referenced Discharges Measured Using an Acoustic Doppler Current Profiler [J]. Journal of Hydrology, 2011, 401(3): 250-258 http://cn.bing.com/academic/profile?id=1988682710&encoded=0&v=paper_preview&mkt=zh-cn
    [8]
    Griffiths G. Using 3DF GPS Heading for Improving Underway ADCP Data [J]. Journal of Atmospheric and Oceanic Technology, 1994, 11: 1 135-1 143 doi: 10.1175/1520-0426(1994)011<1135:UGHFIU>2.0.CO;2
    [9]
    Fong D A, Monismith S G. Evaluation of the Accuracy of a Vessel-mounted, Bottom-tracking ADCP in a Near-shore Coastal Flow [J]. Journal of Atmospheric and Oceanic Technology, 2004, 21: 1 121-1 128 doi: 10.1175/1520-0426(2004)021<1121:EOTAOA>2.0.CO;2
    [10]
    张美富, 刘大伟, 王真祥, 等.基于GPS罗经的感潮河段ADCP测验精度研究[J].现代测绘, 2010, 33(6): 32-34 http://www.cnki.com.cn/Article/CJFDTOTAL-JSCH201006012.htm

    Zhang Meifu, Liu Dawei, Wang Zhenxiang, et al. Research on Precision of ADCP Discharge Measurement Using GPS Compass in Tide Reach [J]. Modern Surveying and Mapping, 2010, 33(6): 32-34 http://www.cnki.com.cn/Article/CJFDTOTAL-JSCH201006012.htm
    [11]
    彭万兵, 官学文, 赵东. ADCP与GPS在内河流态测量中的应用问题及对策[J].地理空间信息, 2004, 2(5): 42-44 http://www.cnki.com.cn/Article/CJFDTOTAL-DXKJ200405014.htm

    Peng Wanbing, Guan Xuewen, Zhao Dong. Application of Combined ADCP and GPS Techniques to Inner River' Flowpattern [J]. Geospatial Information, 2004, 2(5): 42-44 http://www.cnki.com.cn/Article/CJFDTOTAL-DXKJ200405014.htm
    [12]
    陈力平, 方波, 季成康.应用GPS技术改正ADCP测量误差[J].人民长江, 2002, 33(1): 36-37 http://www.cnki.com.cn/Article/CJFDTOTAL-RIVE200201016.htm

    Chen Liping, Fang Bo, Ji Chengkang. Application of GPS to Correct ADCP Measurement Error [J]. Yangtze River, 2002, 33(1): 36-37 http://www.cnki.com.cn/Article/CJFDTOTAL-RIVE200201016.htm
    [13]
    吴中, 陈力平, 游目林.底部浮泥表层推移速度分布的ADCP-GPS估测方法[J].海洋工程, 2002, 20(4): 85-88 http://mall.cnki.net/magazine/article/hygc200204014.htm

    Wu Zhong, Chen Liping, You Mulin. ADCP-GPS Surveying Method of Velocity Distribution of Bed Load Movement [J]. The Ocean Engineering, 2002, 20(4): 85-88 http://mall.cnki.net/magazine/article/hygc200204014.htm
    [14]
    Mueller D S, Wagner C R. Measuring Discharge with Acoustic Doppler Current Profilers from a Moving Vessel [R]. US Department of Interior: US Gedogical Survey, 2009
    [15]
    González-Castro J A, Muste M. Framework for Estimating Uncertainty of ADCP Measurements from a Moving Boat by Standardized Uncertainty Analysis [J]. Journal of Hydraulic Engineering, 2007, 133:1 390-1 410 doi: 10.1061/(ASCE)0733-9429(2007)133:12(1390)
    [16]
    崔希璋, 於宗俦, 陶本藻.广义测量平差[M].武汉:武汉大学出版社, 2001
  • Related Articles

    [1]JIN Biao, CHEN Shanshan, LI Zhulian, LI Yuqiang, LI Zixiao. SBAS GEO Satellite User Range Error and Position Augmentation Research[J]. Geomatics and Information Science of Wuhan University, 2024, 49(7): 1166-1175. DOI: 10.13203/j.whugis20210091
    [2]ZHANG Qin, WANG Le, LAI Wen, WANG Qining, LONG Zhengxin. Simulation and Comprehensive Performance Evaluation of the Integrated Space-Ground System for Low Earth Orbit-Enhanced BeiDou Navigation Satellite System[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1863-1875. DOI: 10.13203/j.whugis20230342
    [3]BU Jinwei, ZUO Xiaoqing, JIN Lixin, CHANG Jun. Positioning Performance Evaluation of BDS/QZSS and Its Combined Systems in China, Japan and Their Peripheral Areas[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 574-585, 611. DOI: 10.13203/j.whugis20180228
    [4]WANG Lei, CHEN Ruizhi, LI Deren, YU Baoguo, WU Cailun. Quality Assessment of the LEO Navigation Augmentation Signals from Luojia-1A Satellite[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2191-2196. DOI: 10.13203/j.whugis20180413
    [5]ZHANG Lihua, WEN Lianfa, JIA Shuaidong. Indices and Methods for Evaluating Quantificationally the Quality of Simplification of a Depth-Contour in Nautical Chart[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 496-501, 508. DOI: 10.13203/j.whugis20160113
    [6]LI Zuohu, HAO Jinming, LI Jianwen, ZHANG Chengjun. Analysis on QZSS Augmentation on Area Performance of GPS[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 17-20.
    [7]LIU Xin, YIN Qian, GUO Ping. A Study of Software Fault Tolerance System Evaluation Strategy[J]. Geomatics and Information Science of Wuhan University, 2008, 33(10): 1018-1021.
    [8]CHEN Nan. Performance Evaluation of the Structure of GNSS Navigation Message[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5): 512-515.
    [9]ZHANG Yajie, TANG Xu, ZHU Guorui. Improvement on Evaluation Model for Base Land Price[J]. Geomatics and Information Science of Wuhan University, 2004, 29(6): 551-554.
    [10]TANG Xu, HU Shiyuan, LIU Yaolin. Design and Integration of Repository in Land Evaluation System[J]. Geomatics and Information Science of Wuhan University, 2004, 29(5): 433-437. DOI: 10.13203/j.whugis2004.05.013
  • Cited by

    Periodical cited type(22)

    1. 张奋,贾小林,阮仁桂,朱永兴,宗文鹏. QZSS区域卫星导航系统性能分析. 测绘与空间地理信息. 2024(10): 11-15 .
    2. 金彪,李锐,王盾,刘磊,原晋栩,李子潇. 星基增强系统单频服务性能评估方法. 北京航空航天大学学报. 2024(10): 3062-3073 .
    3. 寇瑞雄,杨树文. 基于广义延拓逼近法的QZSS卫星钟差内插精度分析. 全球定位系统. 2022(04): 73-78 .
    4. 金彪,魏巍,陈姗姗,李东俊. SBAS星历改正数及UDRE参数生成算法分析. 武汉大学学报(信息科学版). 2021(01): 111-117 .
    5. 朱轶群,吴继忠. QZSS L6E增强服务改正数支持的PPP性能评估. 测绘科学. 2021(02): 34-41 .
    6. 倪育德,王子成. 地球静止轨道卫星数对广域增强系统性能的影响. 科学技术与工程. 2021(16): 6737-6745 .
    7. 陈姗姗,金彪,赵立谦,夏川茹,王雷雷. SBAS电文时序动态编排算法. 北京航空航天大学学报. 2021(10): 1996-2005 .
    8. 糜晓龙,袁运斌,张宝成. 多频多模GNSS接收机差分相位偏差的短期时变特性. 测绘学报. 2021(10): 1290-1297 .
    9. 董洲洋,朱兆涵,徐健. 全球导航卫星系统时间精度分析. 测绘与空间地理信息. 2021(11): 17-19 .
    10. 寇瑞雄,杨树文. 准天顶卫星系统广播星历精度评定和拟合精度分析. 全球定位系统. 2021(05): 39-47 .
    11. 布金伟,左小清,金立新,常军. BDS/QZSS及其组合系统在中国和日本及周边地区的定位性能评估. 武汉大学学报(信息科学版). 2020(04): 574-585+611 .
    12. 郝茂森,贾小林,曾添,焦文海. QZSS亚米级增强服务和MSAS增强定位性能评估. 导航定位与授时. 2020(05): 91-99 .
    13. 陈健,Yue Dongjie,Zhu Shaolin,Liu Zhiqiang,Dai Jianbiao. Comparison of availability and reliability among different combined-GNSS/RNSS precise point positioning. High Technology Letters. 2020(03): 235-242 .
    14. 赵镇,陈刚,胡志刚. 星基增强系统L1频段信息服务性能分析. 中国地震. 2020(04): 912-923 .
    15. 喻思琪,张小红,郭斐,李昕,潘林,马福建. 卫星导航进近技术进展. 航空学报. 2019(03): 16-37 .
    16. 张玉英,谭荣建,布金伟,李国柱,张东升. BDS+QZSS双系统组合PPP性能评估. 城市勘测. 2019(02): 107-113 .
    17. 何巧,陈伟康. GPS/QZSS双系统组合定位性能分析. 北京测绘. 2019(05): 541-545 .
    18. 江永生. QZSS增强信号对GPS定位增强效果的分析. 北京测绘. 2019(08): 969-973 .
    19. 徐炜,贾雪,王涛. QZSS/IRNSS对BDS在中国定位性能增强的评估. 测绘工程. 2018(01): 31-36 .
    20. 张文峰. 星基增强信号的GPS实时精密单点定位算法. 测绘科学. 2018(08): 62-67 .
    21. 毛琪,麻智超,卢满宏,王松. GAGAN系统在北京地区定位性能测试与评估. 遥测遥控. 2017(04): 53-57 .
    22. 张琳. QZSS导航系统在亚太地区的初步性能评估. 中国惯性技术学报. 2017(05): 618-623 .

    Other cited types(17)

Catalog

    Article views (1358) PDF downloads (381) Cited by(39)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return