CHEN Junping, ZHANG Yize, XIE Yibing, ZHOU Xuhua. Rapid Data Processing of Huge Networks and Multi-GNSS Constellation[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 253-257. DOI: 10.13203/j.whugis20120712
Citation: CHEN Junping, ZHANG Yize, XIE Yibing, ZHOU Xuhua. Rapid Data Processing of Huge Networks and Multi-GNSS Constellation[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 253-257. DOI: 10.13203/j.whugis20120712

Rapid Data Processing of Huge Networks and Multi-GNSS Constellation

Funds: The National Natural Science Foundation of China,Nos.41174024,11273046,40974018;the 100Talents Programof the Chinese Academy of Sciences;the National High Technology Research and Development Program of China(863Program),No.2013AA122402;the Shanghai Committee of Science and Technology,No.12DZ2273300,13PJ1409900.
More Information
  • Author Bio:

    CHEN Junping,professor,PhD,PhD supervisor,specializes in satellite geodesy and geodynamics.

  • Received Date: March 06, 2013
  • Revised Date: March 04, 2014
  • Published Date: March 04, 2014
  • Objective In the first part of the paper we discuss the challenges of huge networks and multi-GNSS da-ta processing for the zero-difference(ZD)strategy.Using 4weeks’of data from global IGS GPS/GLONASS stations,we performed daily data processing with data sampling ranging from 5-15min.Acomparison of the processing time and product precision under different sampling data shows:①Computation efficiency is greatly improved by increasing data sampling;our results show the improve-ment of maximum 52%;② Difference of product precision was marginally observed,and product pre-cision is almost the same when the sampling rate was changed from 5-10min.To analyze the impact ofdifferent products on positioning applications,we performed PPP for 22globally distributed IGS sta-tions and kinematic precise orbit determination for GRACE satellites using products generated fromdifferent data sampling procedures.Results show:①Static PPP precision differs by less than 2mmand 6mm for the horizontal and height components,respectively;②kinematic PPP precision differsby less than 1.5cm for each coordinate component and less than 2cm in three-dimensions.
  • Related Articles

    [1]IA Lei, LAI Zulong, MEI Changsong, JIAO Chenchen, JIANG Ke, PAN Xiong. An Improved Algorithm for Real-Time Cycle Slip Detection and Repair Based on TurboEdit Epoch Difference Model[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 920-927. DOI: 10.13203/j.whugis20190287
    [2]XU Yaming, SUN Fuyu, ZHANG Peng, WANG Jinling. A Pseudolite Positioning Approach Utilizing Carrier Phase Difference[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1445-1450. DOI: 10.13203/j.whugis20170033
    [3]ZHANG Xiaohong, ZENG Qi, HE Jun, KANG Chao. Improving TurboEdit Real-time Cycle Slip Detection by the Construction of Threshold Model[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 285-292. DOI: 10.13203/j.whugis20150045
    [4]ZHANG Tisheng, ZHENG Jiansheng, ZHANG Hongping, YAN Kunlun. Oscillator Effects on Carrier-Phase Measurements in GNSS Receiver[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1413-1416.
    [5]LIU Ning, XIONG Yongliang, XU Shaoguang. Detection and Repair of Cycle Slips Using Improved TurboEdit Algorithm and Chebyshev Polynomial Method[J]. Geomatics and Information Science of Wuhan University, 2011, 36(12): 1500-1503.
    [6]WENG Yongzhi, WU Jie. Time-differenced Carrier Phase/SINS Tight Integration Algorithm in the High-precision Navigation for High Earth Orbit Spacecraft[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1195-1199.
    [7]WU Jizhong, SHI Chuang, FANG Rongxin. Improving the Single Station Data Cycle Slip Detection Approach TurboEdit[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 29-33.
    [8]WANG Aisheng, OU Jikun. Detecting and Repairing Cycle Slips in GPS Single Frequency Carrier Phase Using Lowpass[J]. Geomatics and Information Science of Wuhan University, 2006, 31(12): 1079-1081.
    [9]WANG Fuhong, LIU Jiyu. A New Algorithm Detecting Cycle Slips in Satellite-Borne GPS Carrier Phase Measurements for Precise Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 772-774.
    [10]Han Shaowei. Equivalence of the Methods for GPS Data Processing with Carrier Phase Observations[J]. Geomatics and Information Science of Wuhan University, 1991, 16(1): 68-77.
  • Cited by

    Periodical cited type(12)

    1. 董可,冯威,董兴干,黄丁发. 高频GNSS数据MGF周跳解算方法的质量控制. 武汉大学学报(信息科学版). 2023(02): 268-276 .
    2. 姜毅,石绍杰. 基于载噪比加权的BDS周跳探测方法研究. 大地测量与地球动力学. 2023(06): 575-580 .
    3. 范晓曼,黄劲松. 一种基于卡尔曼滤波的RTK定位周跳探测方法. 测绘地理信息. 2023(04): 65-69 .
    4. 朱云鹏,周松光. 一种GPS的双频周跳探测算法. 河南科技. 2022(03): 10-13 .
    5. 吕震,王振杰,单瑞,刘金萍. Galileo四频数据周跳探测与修复方法. 导航定位学报. 2022(03): 69-77 .
    6. 韩子彬,白燕,张峰,郭燕铭,卢晓春. 星地双向时差测量系统周跳探测与修复算法. 全球定位系统. 2022(03): 65-72 .
    7. 刘国超,谢小摧,周志远,曾令响. 双频载波相位求差法在BDS周跳探测与修复中的应用. 工程勘察. 2021(01): 54-57 .
    8. 蔡成林,沈文波,曾武陵,于洪刚,谢小平. 多普勒积分重构与STPIR联合周跳探测与修复. 测绘学报. 2021(02): 160-168 .
    9. 张晨晰,党亚民,薛树强,张龙平. 一种基于TurboEdit的BDS周跳探测改进方法. 测绘科学. 2021(06): 47-52+64 .
    10. 祝会忠,王煊,王楚扬,徐爱功,朱广彬. BDS中长距离基线高精度静态定位方法与实验. 测绘科学. 2020(03): 8-14 .
    11. 沈朋礼,成芳,肖厦,肖秋龙,卢晓春. 北斗三号卫星的周跳探测与修复算法. 测绘科学. 2019(11): 9-14+21 .
    12. 曲家庆,林加涛. 高精度双频卫星导航接收机相对定位方法. 制导与引信. 2018(02): 46-49 .

    Other cited types(7)

Catalog

    Article views PDF downloads Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return