徐仁, 阿里木·赛买提, 李二珠, 王伟. 面向任务对齐的遥感场景图像非监督域适应分类[J]. 武汉大学学报 ( 信息科学版). DOI: 10.13203/j.whugis20230084
引用本文: 徐仁, 阿里木·赛买提, 李二珠, 王伟. 面向任务对齐的遥感场景图像非监督域适应分类[J]. 武汉大学学报 ( 信息科学版). DOI: 10.13203/j.whugis20230084
XU Ren, SAIMAITI A-li-mu, LI Er-zhu, WANG Wei. Task-oriented Alignment for Unsupervised Domain Adaptation of Remote sensing scene image classification[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230084
Citation: XU Ren, SAIMAITI A-li-mu, LI Er-zhu, WANG Wei. Task-oriented Alignment for Unsupervised Domain Adaptation of Remote sensing scene image classification[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230084

面向任务对齐的遥感场景图像非监督域适应分类

Task-oriented Alignment for Unsupervised Domain Adaptation of Remote sensing scene image classification

  • 摘要: 近年来,因在端到端处理、隐含特征表示等方面的特殊优势,深度学习已成为遥感图像分类、目标识别、变化监测等任务中的主流解决方案。遥感场景图像分类是遥感图像分类领域中的热点研究方向之一,常规深度学习方法的性能常因图像的场景结构、空间尺度与分辨率、数据源及模型假设等因素而受到一定限制,尤其在异源场景数据间的特征迁移、模型复用任务中。针对此问题,将计算机视觉领域中基于面向任务对齐的非监督域适应方法(Task-oriented Alignment for Unsupervised Domain Adaptation, ToAlign UDA)引入到跨域遥感场景图像分类任务中,在解释算法原理和优化机制的基础上通过对比试验评价了其分类性能。试验使用ToAlign UDA对源域数据集进行训练学习,对NWPU-RESISC45、AID、PatternNet三个目标数据集进行测试,在源域和目标域的空间分布、光谱特征、尺度等相似度较高的情况下,三个目标数据集的总体分类精度分别达到了95.16%、96.17%、99.28%。三者的分类精度均高于大多数场景分类算法,试验表明ToAlign UDA在遥感场景图像分类领域具有良好的算法竞争力。

     

    Abstract: Objectives: This paper is primarily aimed at addressing the prevailing challenges in remote sensing scene image classification, specifically those associated with the utilization of heterogeneous data and the achievement of cross-domain classification. The conventional deep learning methods, while effective, often encounter limitations due to factors such as spatial scale and resolution, data sources, model assumptions, and the inherent diversity of scene data when dealing with tasks like feature transferring and model reuse. Methods: In an attempt to overcome these obstacles, we introduce a novel approach called task-oriented alignment for unsupervised domain adaptation (ToAlign UDA). This approach, borrowed from the field of computer vision, is designed to enhance cross-domain remote sensing scene image classification. The principles and optimization mechanisms of the algorithm are explained, and its classification performance is evaluated through comparative experiments. Results: ToAlign UDA is used in the experiment to train on the source domain dataset, while tests are conducted on three target datasets: NWPU-RESISC45, AID, and PatternNet. When the spatial distribution, spectral characteristics, scale, and other similarities between the source and target domains are high, ToAlign UDA achieves an overall classification accuracy of 95.16% on NWPU-RESISC45, 96.17% on AID, and 99.28% on PatternNet. Conclusions: The results clearly indicate that the ToAlign UDA approach outperforms most scene classification algorithms in terms of classification accuracy in remote sensing scene image analysis. Therefore, it holds significant potential in advancing the field of remote sensing image classification, particularly in the context of utilizing heterogeneous data and achieving cross-domain classification.

     

/

返回文章
返回