留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全球海底地形精细建模进展与发展趋势

李倩倩 鲍李峰 吴自银 武凛 孙和平

李倩倩, 鲍李峰, 吴自银, 武凛, 孙和平. 全球海底地形精细建模进展与发展趋势[J]. 武汉大学学报 ● 信息科学版. doi: 10.13203/j.whugis20220412
引用本文: 李倩倩, 鲍李峰, 吴自银, 武凛, 孙和平. 全球海底地形精细建模进展与发展趋势[J]. 武汉大学学报 ● 信息科学版. doi: 10.13203/j.whugis20220412
LI Qianqian, BAO Lifeng, WU Ziyin, WU Lin, SUN Heping. Progress and Development Trend of Global Refined Seafloor Topography Modeling[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20220412
Citation: LI Qianqian, BAO Lifeng, WU Ziyin, WU Lin, SUN Heping. Progress and Development Trend of Global Refined Seafloor Topography Modeling[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20220412

全球海底地形精细建模进展与发展趋势

doi: 10.13203/j.whugis20220412
基金项目: 

国家自然科学基金(42192535,42192533,42174102,41931076)

中国科学院基础前沿科学研究计划项目(ZDBS-LY-DQC028)。

详细信息
    作者简介:

    李倩倩,博士,主要从事卫星测高反演海洋重力场和海底地形等方面的研究。E-mail:15072418205@asch.whigg.ac.cn

  • 中图分类号: P223

Progress and Development Trend of Global Refined Seafloor Topography Modeling

Funds: 

The National Natural Science Foundation of China (42192535, 42192533, 42174102, 41931076)

the Basic Frontier Science Research Program of Chinese Academy of Sciences (ZDBS-LY-DQC028)

  • 摘要: 精细的海底地形模型在海底板块构造运动、水下载体航行保障、海洋资源勘探等方面具有重要作用。本文回顾了国内外海底地形探测技术和模型构建的发展,讨论了当前全球海底地形精细建模的研究现状和面临的主要挑战,总结了今后全球海底地形精细建模的发展趋势,认为基于卫星测高技术的海洋重力场反演仍是未来全球海底地形精细建模的主要技术手段,并且新体制测高卫星如双星跟飞测高和SWOT (Surface Water Ocean Topography)二维海面高测量任务将为进一步提升海洋重力场以及海底地形模型精度提供数据源,结合地形复杂度优化海底地形反演理论方法有望带来理论创新,探索人工智能技术用于海底地形精细建模值得关注。
  • [1] de Moustier C. Field evaluation of sounding accuracy in deep water multibeam swath bathymetry[C]//MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings. Honolulu, HI, USA.:1761-1765vol.3
    [2] Marks K M, Smith W H F. An Uncertainty Model for Deep Ocean Single Beam and Multibeam Echo Sounder Data[J]. Marine Geophysical Researches, 2008, 29(4):239-250
    [3] Guenther G C. Airborne Lidar Bathymetry[M]//David F Maune. Digital Elevation Model Technologies and Applications:The DEM Users Manual. 2nd ed. Maryland:The American Society for Photogrammetry and Remote Sensing, 2007:253-320
    [4] Hickman G D, Hogg J E. Application of an Airborne Pulsed Laser for near Shore Bathymetric Measurements[J]. Remote Sensing of Environment, 1969, 1(1):47-58
    [5] Parker H, Sinclair M. The successful application of Airborne LiDAR Bathymetry surveys using latest technology[C]//2012 Oceans-Yeosu. Yeosu, Korea (South).:1-4
    [6] Pastol Y. Use of Airborne LIDAR Bathymetry for Coastal Hydrographic Surveying:The French Experience[J]. Journal of Coastal Research, 2011, 62:6-18
    [7] Feygels V, Ramnath V, Smith B, et al. Meeting the international hydrographic organization requirements for bottom feature detection using the Coastal Zone Mapping and Imaging Lidar (CZMIL)[C]//OCEANS 2016 MTS/IEEE Monterey. Monterey, CA, USA.:1-6
    [8] Wozencraft J, Millar D. Airborne Lidar and Integrated Technologies for Coastal Mapping and Nautical Charting[J]. Marine Technology Society Journal, 2005, 39(3):27-35
    [9] Wright C W, Kranenburg C, Battista T A, et al. Depth Calibration and Validation of the Experimental Advanced Airborne Research Lidar, EAARL-B[J]. Journal of Coastal Research, 2016, 76:4-17
    [10] Kotilainen A T, Kaskela A M. Comparison of Airborne LiDAR and Shipboard Acoustic Data in Complex Shallow Water Environments:Filling in the White Ribbon Zone[J]. Marine Geology, 2017, 385:250-259
    [11] Parker R L. The Rapid Calculation of Potential Anomalies[J]. Geophysical Journal International, 1973, 31(4):447-455
    [12] Watts A B. An Analysis of Isostasy in the World's Oceans 1. Hawaiian-Emperor Seamount Chain[J]. Journal of Geophysical Research:Solid Earth, 1978, 83(B12):5989-6004
    [13] Dixon T H, Parke M E. Bathymetry Estimates in the Southern Oceans from Seasat Altimetry[J]. Nature, 1983, 304(5925):406-411
    [14] Smith W H F, Sandwell D T. Bathymetric Prediction from Dense Satellite Altimetry and Sparse Shipboard Bathymetry[J]. Journal of Geophysical Research:Solid Earth, 1994, 99(B11):21803-21824
    [15] Tscherning C C. First experiment with improvement of depth information using gravity anomalies in the Mediterranean Sea[M]. In:Arabelos&Tziavos. GEOMED report no.4, 1994, 133-148
    [16] Calmant S. Seamount Topography by Least-Squares Inversion of Altimetric Geoid Heights and Shipborne Profiles of Bathymetry and/or Gravity Anomalies[J]. Geophysical Journal International, 1994, 119(2):428-452
    [17] Calmant S, Berge-Nguyen M, Cazenave A. Global Seafloor Topography from a Least-Squares Inversion of Altimetry-Based High-Resolution Mean Sea Surface and Shipboard Soundings[J]. Geophysical Journal International, 2002, 151(3):795-808
    [18] Arabelos D. On the Possibility to Estimate Ocean Bottom Topography from Marine Gravity and Satellite Altimeter Data Using Collocation[M]//Geodesy on the Move. Berlin, Heidelberg:Springer Berlin Heidelberg, 1998:105-112
    [19] Hwang C. A Bathymetric Model for the South China Sea from Satellite Altimetry and Depth Data[J]. Marine Geodesy, 1999, 22(1):37-51
    [20] Smith W H F, Sandwell D T. Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings[J]. Science, 1997, 277(5334):1956-1962
    [21] Sandwell D T, Müller R D, Smith W H F, et al. Marine Geophysics. New Global Marine Gravity Model from CryoSat-2 and Jason-1 Reveals Buried Tectonic Structure[J]. Science, 2014, 346(6205):65-67
    [22] (胡敏章,张胜军,金涛勇,等.新一代全球海底地形模型BAT_WHU2020.测绘学报,2020, 49(8):939-951.)

    HU Minzhang, ZHANG Shengjun, JIN Taoyong, et al. A new generation of global bathymetry model BAT_WHU2020[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(8):939-954.
    [23] Kim S S, Wessel P. New Global Seamount Census from Altimetry-Derived Gravity Data[J]. Geophysical Journal International, 2011, 186(2):615-631
    [24] Hsiao Y S, Kim J W, Kim K B, et al. Bathymetry Estimation Using the Gravity-Geologic Method:An Investigation of Density Contrast Predicted by the Downward Continuation Method[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2011, 22(3):347
    [25] Hsiao Y S, Hwang C, Cheng Y S, et al. High-Resolution Depth and Coastline over Major Atolls of South China Sea from Satellite Altimetry and Imagery[J]. Remote Sensing of Environment, 2016, 176:69-83
    [26] Wang Y M. Predicting Bathymetry from the Earth's Gravity Gradient Anomalies[J]. Marine Geodesy, 2000, 23(4):251-258
    [27] Jena B, Kurian P J, Swain D, et al. Prediction of Bathymetry from Satellite Altimeter Based Gravity in the Arabian Sea:Mapping of Two Unnamed Deep Seamounts[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 16:1-4
    [28] Yang J J, Jekeli C, Liu L T. Seafloor Topography Estimation from Gravity Gradients Using Simulated Annealing[J]. Journal of Geophysical Research:Solid Earth, 2018, 123(8):6958-6975
    [29] Sandwell D T,2020, https://app.dimensions.ai/details/grant/grant.9055569
    [30] Lyzenga D R. Passive Remote Sensing Techniques for Mapping Water Depth and Bottom Features[J]. Applied Optics, 1978, 17(3):379-383
    [31] Stove G C. Use of high resolution satellite imagery in optical and infrared wavebands as an aid to hydrographic and coastal engineering[C]//Proceedings Conference on Electronics in Soil and Gas. Landon, 1985, 509-530
    [32] Sandidge J C, Holyer R J. Coastal Bathymetry from Hyperspectral Observations of Water Radiance[J]. Remote Sensing of Environment, 1998, 65(3):341-352
    [33] Sandwell D T, Goff J A, Gevorgian J, et al. Improved Bathymetric Prediction Using Geological Information:SYNBATH[J]. Earth and Space Science, 2022, 9(2):e2021EA002069
    [34] Andersen O, Knudsen P. The DNSC08BAT Bathymetry Developed from Satellite Altimetry[C]. Vienna, Austria:EGU Meeting, 2008
    [35] Andersen O. The DTU10 Global Gravity Field and Mean Sea Surface-Improvements in the Arctic[C]//2nd IGFS Meeting, 2010
    [36] Becker J J, Sandwell D T. SRTM30_PLUS:Data fusion of SRTM land topography with measured and estimated seafloor topography[BD/OL]. Scripps Inst. Oceanography, Univ. California San Diego, 2004, 9500
    [37] Becker J J, Sandwell D T, Smith W H F, et al. Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution:SRTM30_PLUS[J]. Marine Geodesy, 2009, 32(4):355-371
    [38] Olson C J, Becker J J, Sandwell D T. 2014. A new global bathymetry map at 15 arcsecond resolution for resolving seafloor fabric:SRTM15_PLUS[C]//AGU Fall Meeting Abstracts, 2014:OS34A-03.
    [39] Tozer B, Sandwell D T, Smith W H F, et al. Global Bathymetry and Topography at 15 Arc Sec:SRTM15+[J]. Earth and Space Science, 2019, 6(10):1847-1864
    [40] Jakobsson M. Global Bathymetric Data Sets-General Bathymetric Chart of the Oceans (GEBCO)[J]. Bollettino Di Geofisica, 2016
    [41] Weatherall P, Marks K M, Jakobsson M, et al. A New Digital Bathymetric Model of the World's Oceans[J]. Earth and Space Science, 2015, 2(8):331-345
    [42] Mayer L, Jakobsson M, Allen G, et al. The Nippon Foundation-GEBCO Seabed 2030 Project:The Quest to See the World's Oceans Completely Mapped by 2030[J]. Geosciences, 2018, 8(2):63
    [43] Hu M Z, Li L, Jin T Y, et al. A New 1'×1'Global Seafloor Topography Model Predicted from Satellite Altimetric Vertical Gravity Gradient Anomaly and Ship Soundings BAT_VGG2021[J]. Remote Sensing, 2021, 13(17):3515
    [44] Hu M Z, Jin T Y, Jiang W P, et al. Bathymetry Model in the Northwestern Pacific Ocean Predicted from Satellite Altimetric Vertical Gravity Gradient Anomalies and Ship-Board Depths[J]. Marine Geodesy, 2022, 45(1):24-46
  • [1] 范雕, 李姗姗, 孟书宇, 邢志斌, 张驰, 冯进凯, 曲政豪.  海底地形高次项对海面重力信息影响分析 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20190192
    [2] 李厚朴, 边少锋, 纪兵, 陈永冰.  基于逆Vening-Meinesz公式的测高重力中央区效应精密计算 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20150744
    [3] 马凯, 徐卫明, 许坚, 董洲洋.  一种多波束声速剖面反演与海底地形校正技术 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20170112
    [4] 胡敏章, 李建成, 金涛勇, 徐新禹, 邢乐林, 吴云龙.  联合多源数据确定中国海及周边海底地形模型 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j .whu g is20130700
    [5] 张保军, 王泽民.  联合卫星重力、卫星测高和海洋资料研究全球海平面变化 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20150230
    [6] 胡敏章, 李建成, 金涛勇.  顾及局部地形改正的GGM海底地形反演 . 武汉大学学报 ● 信息科学版,
    [7] 黄强, 范东明, 游为.  利用GOCE卫星轨道数据反演地球重力场模型 . 武汉大学学报 ● 信息科学版,
    [8] 胡敏章, 李建成, 金涛勇.  应用重力地质方法反演皇帝海山的海底地形 . 武汉大学学报 ● 信息科学版,
    [9] 李大炜, 李建成, 金涛勇, 胡敏章.  利用多代卫星测高资料监测1993~2011年全球海平面变化 . 武汉大学学报 ● 信息科学版,
    [10] 纪兵, 陈良友, 边少锋.  利用重力梯度测量探测海底障碍地形的模拟研究 . 武汉大学学报 ● 信息科学版,
    [11] 王瑞, 李厚朴.  基于逆Stokes公式的测高重力反演中央区效应计算 . 武汉大学学报 ● 信息科学版,
    [12] 吴云孙, 晁定波, 李建成, 王正涛.  利用测高重力梯度异常反演中国南海海底地形 . 武汉大学学报 ● 信息科学版,
    [13] 王虎彪, 王勇, 陆洋, 周旭华.  联合多种测高数据确定中国海及其邻域1.5′×1.5′重力异常 . 武汉大学学报 ● 信息科学版,
    [14] 王虎彪, 王勇, 陆洋.  联合多种测高数据确定中国边缘海及全球海域的垂线偏差 . 武汉大学学报 ● 信息科学版,
    [15] 黄谟涛, 王瑞, 翟国君, 欧阳永忠.  多代卫星测高数据联合平差及重力场反演 . 武汉大学学报 ● 信息科学版,
    [16] 许军, 暴景阳, 刘雁春.  潮汐模型对利用卫星测高数据研究海平面变化的影响 . 武汉大学学报 ● 信息科学版,
    [17] 鲍李峰, 陆洋.  西太平洋海域卫星测高重力垂直梯度分布 . 武汉大学学报 ● 信息科学版,
    [18] 黄谟涛, 翟国君, 欧阳永忠, 周宏山.  利用卫星测高资料反演海底地形研究 . 武汉大学学报 ● 信息科学版,
    [19] 章传银, 李建成, 晁定波.  联合卫星测高和海洋物理数据计算近海稳态海面地形 . 武汉大学学报 ● 信息科学版,
    [20] 暴景阳, 晁定波, 李建成, 邓晓丽.  由T/P卫星测高数据建立南中国海潮汐模型的初步研究 . 武汉大学学报 ● 信息科学版,
  • 加载中
计量
  • 文章访问数:  68
  • HTML全文浏览量:  3
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-06
  • 网络出版日期:  2022-08-18

全球海底地形精细建模进展与发展趋势

doi: 10.13203/j.whugis20220412
    基金项目:

    国家自然科学基金(42192535,42192533,42174102,41931076)

    中国科学院基础前沿科学研究计划项目(ZDBS-LY-DQC028)。

    作者简介:

    李倩倩,博士,主要从事卫星测高反演海洋重力场和海底地形等方面的研究。E-mail:15072418205@asch.whigg.ac.cn

  • 中图分类号: P223

摘要: 精细的海底地形模型在海底板块构造运动、水下载体航行保障、海洋资源勘探等方面具有重要作用。本文回顾了国内外海底地形探测技术和模型构建的发展,讨论了当前全球海底地形精细建模的研究现状和面临的主要挑战,总结了今后全球海底地形精细建模的发展趋势,认为基于卫星测高技术的海洋重力场反演仍是未来全球海底地形精细建模的主要技术手段,并且新体制测高卫星如双星跟飞测高和SWOT (Surface Water Ocean Topography)二维海面高测量任务将为进一步提升海洋重力场以及海底地形模型精度提供数据源,结合地形复杂度优化海底地形反演理论方法有望带来理论创新,探索人工智能技术用于海底地形精细建模值得关注。

English Abstract

李倩倩, 鲍李峰, 吴自银, 武凛, 孙和平. 全球海底地形精细建模进展与发展趋势[J]. 武汉大学学报 ● 信息科学版. doi: 10.13203/j.whugis20220412
引用本文: 李倩倩, 鲍李峰, 吴自银, 武凛, 孙和平. 全球海底地形精细建模进展与发展趋势[J]. 武汉大学学报 ● 信息科学版. doi: 10.13203/j.whugis20220412
LI Qianqian, BAO Lifeng, WU Ziyin, WU Lin, SUN Heping. Progress and Development Trend of Global Refined Seafloor Topography Modeling[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20220412
Citation: LI Qianqian, BAO Lifeng, WU Ziyin, WU Lin, SUN Heping. Progress and Development Trend of Global Refined Seafloor Topography Modeling[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20220412
参考文献 (44)

目录

    /

    返回文章
    返回