留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毫米级地球参考框架动态维持技术研究进展

孙付平 贾彦锋 朱新慧 肖凯 刘婧

孙付平, 贾彦锋, 朱新慧, 肖凯, 刘婧. 毫米级地球参考框架动态维持技术研究进展[J]. 武汉大学学报 ● 信息科学版. doi: 10.13203/j.whugis20220126
引用本文: 孙付平, 贾彦锋, 朱新慧, 肖凯, 刘婧. 毫米级地球参考框架动态维持技术研究进展[J]. 武汉大学学报 ● 信息科学版. doi: 10.13203/j.whugis20220126
SUN Fuping, JIA Yanfeng, ZHU Xinhui, XIAO Kai, LIU Jing. Advances in dynamic maintenance technology of mm-level terrestrial reference frame[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20220126
Citation: SUN Fuping, JIA Yanfeng, ZHU Xinhui, XIAO Kai, LIU Jing. Advances in dynamic maintenance technology of mm-level terrestrial reference frame[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20220126

毫米级地球参考框架动态维持技术研究进展

doi: 10.13203/j.whugis20220126
基金项目: 

国家自然科学基金项目(42174047)

详细信息
    作者简介:

    孙付平,博士,教授,博士生导师,主要研究方向为大地测量与导航。sun.fp@163.com

Advances in dynamic maintenance technology of mm-level terrestrial reference frame

Funds: 

the National Natural Science Foundation of China (42174047).

  • 摘要: 毫米级地球参考框架的实现需要毫米级的动态维持技术。目前的动态维持技术主要有基于线性速度的线性维持技术、综合考虑基准站非线性运动和地心运动的非线性维持技术以及历元参考框架技术。首先简要总结了线性维持技术的发展现状;接着从影响机制和坐标时间序列两个角度,围绕坐标非线性变化的建模方法,重点梳理了非线性维持技术的研究进展。然后对历元参考框架的实现过程及其在参考框架维持中的应用进行了介绍。最后基于对现状的分析,提出了实现毫米级地球参考框架动态维持需要解决的几个关键问题。
  • [1] Bloßfeld M, Seitz M, Angermann D. Epoch Reference Frames as Short-Term Realizations of the ITRS[C]//IAG 150 Years. Springer, Cham:Springer International Publishing, 2015, 143:27-32
    [2] Drewes H. Combination of VLBI, SLR and GPS determined station velocities for actual plate kinematic and crustal deformation models[M]//Geodesy on the Move. Springer, Berlin, Heidelberg, 1998:377-382
    [3] Drewes H. The actual plate kinematic and crustal deformation model APKIM2005 as basis for a non-rotating ITRF[M]//Geodetic reference frames. Springer, Berlin, Heidelberg, 2009:95-99
    [4] Sella G F, Dixon T H, Mao A. REVEL:A model for recent plate velocities from space geodesy[J]. Journal of Geophysical Research:Solid Earth, 2002, 107(B4):ETG 11-1-ETG 11-30
    [5] Bird P. An updated digital model of plate boundaries[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(3)
    [6] Altamimi Z, Métivier L, Rebischung P, et al. ITRF2014 plate motion model[J]. Geophysical Journal International, 2017, 209(3):1906-1912
    [7] Tushingham A M, Peltier W R. Ice-3G:A new global model of Late Pleistocene deglaciation based upon geophysical predictions of post-glacial relative sea level change[J]. Journal of Geophysical Research, 1991, 96(B3):4497-4523
    [8] Peltier W R. Global glacial isostatic adjustment:palaeogeodetic and space-geodetic tests of the ICE-4G (VM2) model[J]. Journal of Quaternary Science, 2002, 17(5-6):491-510
    [9] Peltier W R. Global glacial isostasy and the surface of the ice-age Earth:the ICE-5G (VM2) model and GRACE[J]. Annual Review of Earth and Planetary Sciences, 2004, 32:111-149
    [10] Peltier W R, Argus D F, Drummond R. Space geodesy constrains ice age terminal deglaciation:The global ICE-6G_C (VM5a) model[J]. Journal of Geophysical Research:Solid Earth, 2015, 120(1):450-487
    [11] Paulson A, Zhong S, Wahr J. Inference of mantle viscosity from GRACE and relative sea level data[J]. Geophysical Journal International, 2007, 171(2):497-508
    [12] Geruo A, Wahr S, Zhong S J. Computations of the viscoelastic response of a 3-D compressible Earth to surface loading:an application to Glacial Isostatic Adjustment in Antarctica and Canada[J]. Geophysical Journal International, 2013(2):557-572
    [13] Altamimi Z, Rebischung P, Métivier L, et al. ITRF2014:A new release of the International Terrestrial Reference Frame modeling nonlinear station motions[J]. Journal of Geophysical Research:Solid Earth, 2016, 121(8):6109-6131
    [14] (宁津生, 王华, 程鹏飞, 等. 2000国家大地坐标系框架体系建设及其进展[J]. 武汉大学学报(信息科学版), 2015, 40(5):569-573)

    Ning Jinsheng, Wang Hua, Cheng Pengfei, et al. System Construction and Its Progress of China Geodetic Coordinate System 2000[J]. Geomatics and Information Science of Wuhan University, 2015,40(5):569-573
    [15] Klos A, Dobslaw H, Dill R, et al. Identifying the sensitivity of GPS to non-tidal loadings at various time resolutions:examining vertical displacements from continental Eurasia[J]. GPS Solutions, 2021, 25(3):1-17.
    [16] Li Z, Chen W, van Dam T, et al. Comparative analysis of different atmospheric surface pressure models and their impacts on daily ITRF2014 GNSS residual time series[J]. Journal of Geodesy, 2020, 94(4):1-20
    [17] Vandam T M, Blewitt G, Heflin M B. Atmospheric pressure loading effects on Global Positioning System coordinate determinations[J]. Journal of Geophysical Research:Solid Earth, 1994, 99(B12):23939-23950
    [18] Jiang W, Li Z, Dam T V, et al. Comparative analysis of different environmental loading methods and their impacts on the GPS height time series[J]. Journal of Geodesy, 2013, 87(7):687-703
    [19] Nicolas J, Verdun J, Boy J P, et al. Improved Hydrological Loading Models in South America:Analysis of GPS Displacements Using M-SSA[J]. Remote Sensing, 2021, 13(9):1605
    [20] van Dam T, Wahr J, Milly P C D, et al. Crustal displacements due to continental water loading[J]. Geophysical Research Letters, 2001, 28(4):651-654
    [21] Tregoning P, Watson C, Ramillien G, et al. Detecting hydrologic deformation using GRACE and GPS[J]. Geophysical Research Letters, 2009, 36(15):401
    [22] van Dam T, Collilieux X, Wuite J, et al. Nontidal ocean loading:amplitudes and potential effects in GPS height time series[J]. Journal of Geodesy, 2012, 86(11):1043-1057
    [23] Wang L, Thaller D, Susnik A, et al. Improving the products of global GNSS data analysis by correcting for loading displacements at the observation level[C]//EGU General Assembly Conference Abstracts. 2021:EGU21-12920.
    [24] Williams S D P, Penna N T. Non-tidal ocean loading effects on geodetic GPS heights[J]. Geophysical Research Letters, 2011, 38(9):314
    [25] Li C, Huang S, Chen Q, et al. Quantitative evaluation of environmental loading induced displacement products for correcting GNSS time series in CMONOC[J]. Remote sensing, 2020, 12(4):594
    [26] Wang K, Chen H, Jiang W, et al. Improved vertical displacements induced by a refined thermal expansion model and its quantitative analysis in GPS height time series[J]. Journal of Geophysics and Engineering, 2018, 15(2):554-567
    [27] Dong D, Fang P, Bock Y, et al. Anatomy of apparent seasonal variations from GPS-derived site position time series[J]. Journal of Geophysical Research:Solid Earth, 2002, 107(B4):ETG 9-1-ETG 9-16
    [28] Yan H, Chen W, Zhu Y, et al. Contributions of thermal expansion of monuments and nearby bedrock to observed GPS height changes[J]. Geophysical research letters, 2009, 36(13):L13301
    [29] Fang M, Dong D, Hager B H. Displacements due to surface temperature variation on a uniform elastic sphere with its centre of mass stationary[J]. Geophysical Journal International, 2014, 196(1):194-203
    [30] Xu X, Dong D, Fang M, et al. Contributions of thermoelastic deformation to seasonal variations in GPS station position[J]. GPS Solutions, 2017, 21(3):1-10.
    [31] Carrere L, Lyard F, Cancet M, et al. FES2014, a new tidal model-Validation results and perspectives for improvements, presentation to ESA Living Planet Conference[J]. 2016.
    [32] Ray R D. Precise comparisons of bottom-pressure and altimetric ocean tides[J]. Journal of Geophysical Research:Oceans, 2013, 118(9):4570-4584
    [33] Greff-Lefftz M, Métivier L, Besse J. Dynamic mantle density heterogeneities and global geodetic observables[J]. Geophysical Journal International, 2010, 180(3):1080-1094
    [34] Altamimi Z, Collilieux X, Legrand J, et al. ITRF2005:A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters[J]. Journal of Geophysical Research:Solid Earth, 2007, 112(B9):401
    [35] Altamimi Z, Collilieux X, Métivier L. ITRF2008:an improved solution of the international terrestrial reference frame[J]. Journal of Geodesy, 2011, 85(8):457-473
    [36] Wu X, Ray J, van Dam T. Geocenter motion and its geodetic and geophysical implications[J]. Journal of Geodynamics, 2012, 58:44-61
    [37] (秦显平, 杨元喜. 用SLR数据导出的地心运动结果[J]. 测绘学报, 2003(2):120-124)

    Qin Xianping, Yang Yuanxi. Geocenter Variations Derived from the Data of SLR to Lageos2[J]. Acta Geodaetica Et Cartographic Sinica, 2003(2):120-124
    [38] Kang Z, Tapley B, Chen J, et al. Geocenter motion time series derived from GRACE GPS and LAGEOS observations[J]. Journal of Geodesy, 2019, 93(10):1931-1942
    [39] Métivier L, Greff-Lefftz M, Altamimi Z. On secular geocenter motion:the impact of climate changes[J]. Earth and Planetary Science Letters, 2010, 296(3-4):360-366
    [40] Zhao C, Qiao L, MA T. Estimation and prediction of geocenter motion based on GNSS weekly solutions of IGS[C]//AGU Fall Meeting Abstracts. 2019, 2019:G12A-05
    [41] Chen Q, van Dam T, Sneeuw N, et al. Singular spectrum analysis for modeling seasonal signals from GPS time series[J]. Journal of Geodynamics, 2013, 72:25-35
    [42] Wang X, Cheng Y, Wu S, et al. An enhanced singular spectrum analysis method for constructing nonsecular model of GPS site movement[J]. Journal of Geophysical Research:Solid Earth, 2016, 121(3):2193-2211
    [43] Rangelova E, Sideris M G, Kim J W. On the capabilities of the multi-channel singular spectrum method for extracting the main periodic and non-periodic variability from weekly GRACE data[J]. Journal of geodynamics, 2012, 54:64-78
    [44] Davis J L, Wernicke B P, Tamisiea M E. On seasonal signals in geodetic time series[J]. Journal of Geophysical Research:Solid Earth, 2012, 117(B1):403
    [45] Feng T, Shen Y, Wang F. Independent Component Extraction from the Incomplete Coordinate Time Series of Regional GNSS Networks[J]. Sensors, 2021, 21(5):1569
    [46] Liu B, Xing X, Tan J, et al. Modeling Seasonal Variations in Vertical GPS Coordinate Time Series Using Independent Component Analysis and Varying Coefficient Regression[J]. Sensors, 2020, 20(19):5627
    [47] Li Z, Cao L, Jiang S. Comprehensive analysis of Mass Loading Effects on GPS Station Coordinate Time Series Using Different Hydrological Loading Models[J]. IEEE Access, 2021
    [48] Bloßfeld M, Seitz M, Angermann D. Non-linear station motions in epoch and multi-year reference frames[J]. Journal of Geodesy, 2014, 88(1):45-63
  • [1] 马俊, 曹成度, 姜卫平, 周吕.  利用小波包系数信息熵去除GNSS站坐标时间序列有色噪声 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20190353
    [2] 姚宜斌, 冉启顺, 张豹.  改进的启发式分割算法在GNSS坐标时间序列阶跃探测中的应用 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20170322
    [3] 陈国, 魏娜, 赵齐乐, 蔡洪亮, 徐天河.  多分析中心站坐标产品的综合方法研究 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20170363
    [4] 吴继忠, 朱丽强, 龚俊.  利用连续GPS观测数据分析长江三角洲地区地壳变形 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20130832
    [5] 范士杰, 刘焱雄, 王振杰.  日本3·11特大地震的GPS震时和震后响应 . 武汉大学学报 ● 信息科学版,
    [6] 邹蓉, 刘晖, 魏娜, 李敏.  COMPASS地球参考框架的建立和维持 . 武汉大学学报 ● 信息科学版,
    [7] 宫轶松, 归庆明, 李保利, 边少峰.  动态非线性滤波模型非线性强度的曲率度量及其应用 . 武汉大学学报 ● 信息科学版,
    [8] 魏娜, 施闯, 刘经南.  利用GPS数据反演地心运动 . 武汉大学学报 ● 信息科学版,
    [9] 姜卫平, 李昭, 刘万科, 周晓慧.  顾及非线性变化的地球参考框架建立与维持的思考 . 武汉大学学报 ● 信息科学版,
    [10] 张煜, 谭德宝.  利用非线性扩散的半自动纹理图像分割 . 武汉大学学报 ● 信息科学版,
    [11] 姚宜斌, 施闯.  IGS测站的非线性变化研究 . 武汉大学学报 ● 信息科学版,
    [12] 曾文宪, 陶本藻.  三维坐标转换的非线性模型 . 武汉大学学报 ● 信息科学版,
    [13] 陶本藻.  形变反演模型的非线性平差 . 武汉大学学报 ● 信息科学版,
    [14] 王新洲.  非线性模型参数估计的直接解法 . 武汉大学学报 ● 信息科学版,
    [15] 王新洲.  非线性模型能否线性化的实用判据 . 武汉大学学报 ● 信息科学版,
    [16] 王新洲.  非线性模型线性近似的容许曲率 . 武汉大学学报 ● 信息科学版,
    [17] 钟六一.  非线性倒向随机发展方程之适应解 . 武汉大学学报 ● 信息科学版,
    [18] 刘明华, 余模智, 何平安, 黄巧林.  线阵CCD采集系统的非线性度测量 . 武汉大学学报 ● 信息科学版,
    [19] 徐培亮.  非线性函数的协方差传播公式 . 武汉大学学报 ● 信息科学版,
    [20] 陈祥, 杨志强, 田镇, 杨兵, 梁沛.  GA-VMD与多尺度排列熵结合的GNSS坐标时序降噪方法 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20210215
  • 加载中
计量
  • 文章访问数:  136
  • HTML全文浏览量:  16
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-23
  • 网络出版日期:  2022-06-21

毫米级地球参考框架动态维持技术研究进展

doi: 10.13203/j.whugis20220126
    基金项目:

    国家自然科学基金项目(42174047)

    作者简介:

    孙付平,博士,教授,博士生导师,主要研究方向为大地测量与导航。sun.fp@163.com

摘要: 毫米级地球参考框架的实现需要毫米级的动态维持技术。目前的动态维持技术主要有基于线性速度的线性维持技术、综合考虑基准站非线性运动和地心运动的非线性维持技术以及历元参考框架技术。首先简要总结了线性维持技术的发展现状;接着从影响机制和坐标时间序列两个角度,围绕坐标非线性变化的建模方法,重点梳理了非线性维持技术的研究进展。然后对历元参考框架的实现过程及其在参考框架维持中的应用进行了介绍。最后基于对现状的分析,提出了实现毫米级地球参考框架动态维持需要解决的几个关键问题。

English Abstract

孙付平, 贾彦锋, 朱新慧, 肖凯, 刘婧. 毫米级地球参考框架动态维持技术研究进展[J]. 武汉大学学报 ● 信息科学版. doi: 10.13203/j.whugis20220126
引用本文: 孙付平, 贾彦锋, 朱新慧, 肖凯, 刘婧. 毫米级地球参考框架动态维持技术研究进展[J]. 武汉大学学报 ● 信息科学版. doi: 10.13203/j.whugis20220126
SUN Fuping, JIA Yanfeng, ZHU Xinhui, XIAO Kai, LIU Jing. Advances in dynamic maintenance technology of mm-level terrestrial reference frame[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20220126
Citation: SUN Fuping, JIA Yanfeng, ZHU Xinhui, XIAO Kai, LIU Jing. Advances in dynamic maintenance technology of mm-level terrestrial reference frame[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20220126
参考文献 (48)

目录

    /

    返回文章
    返回