Application of GNSS in the Study of Earth Surface Processes
-
摘要:
地球表层系统是地球系统中与人类关系最密切的部分,以地表系统为研究对象的地表过程研究越来越重要。将地球物理和大地测量等手段创新性地运用于地表过程的研究逐渐成为一个新的学科交叉发展方向。全球导航卫星系统(global navigation satellite system, GNSS)观测技术因其具有高精度、全天候、大范围和准实时的特点,被广泛应用于地表过程研究中。从长期地壳形变、地震周期形变、大气可降水量、荷载响应、岩浆及火山活动、滑坡监测和反射测量等方面简要介绍了GNSS技术在地表过程研究中的应用现状,并对未来发展方向进行了讨论。研究表明,鉴于GNSS在观测技术方面的优势,应加强其在地表过程研究中的应用。
Abstract:The earth surface system is the part of the earth system that is most closely related to human beings. The study of surface processes is becoming more and more important in earth system research. The innovative application of geophysics and geodesy to surface processes has gradually become a new interdisciplinary development direction. Global navigation satellite system (GNSS) observation technology is widely used in the study of surface processes because of its characteristics of high accuracy, all-weather, large range and quasi-real-time. In this paper, the application of GNSS technology in the study of surface processes is briefly introduced from the aspects of long-term crustal deformation, coseismic and post-seismic deformation, atmospheric precipitable water, load response, magma and volcanic activity, landslide monitoring and reflection measurement, and then the future development is discussed. The advantages of GNSS in observation technology highlight the importance of GNSS in the earth surface processes research.
-
Keywords:
- GNSS /
- earth surface processes /
- crustal deformation /
- earthquake cycle /
- load response /
- precipitable water vapor
-
耕地资源是粮食安全的根本保障。然而,随着社会经济的迅速发展和城市化进程的不断推进,中国耕地资源总量在2000—2010年下降了1.02×106 hm2[1]。同时,城市与农村居民点周边优质耕地被大量侵占,耕地总体质量下降。在耕地资源补充过程中,大量生态用地被占用,2010—2015年间约有1.10×106 hm2的林地和草地转化为耕地[2],显著地影响了区域生态系统健康水平[3-4]。因此,探索不同耕地保护策略下的耕地数量、质量和生境质量的时空变化趋势,将有助于相应政策的制定和优化,从而确保粮食安全。
为了缓解不断增长的人口与有限耕地资源之间的矛盾,世界各国均制定了相应的耕地保护政策。传统的耕地保护政策以分区保护与用途管制为主,例如美国的农业分区[5]、中国的基本农田保护区[6-7]。此外,部分欧美国家采取农业补贴鼓励休耕、制定农用地景观发展计划等措施开展耕地保护[8-10]。上述政策以单一目标耕地保护为主,在解决国土空间资源有限性与开发不均衡性等问题方面仍有待完善。在此背景下,中国提出了耕地占补平衡政策[11-12],在协调城镇发展与耕地保护之间的冲突方面效果显著。耕地占补平衡政策发展经历了数量平衡、数量-质量平衡和数量-质量-生态三位一体平衡3个阶段。其中,数量平衡是该政策的初级阶段(1997—2003年),该阶段有效遏制了耕地数量快速下降的趋势,一定程度上实现了保护耕地资源和保障经济发展的协调统一。由于该阶段在基于土地开发整理的耕地补偿过程中缺少耕地质量控制措施,出现了占优补劣、占用湿地与林草地等生态用地等系列问题[11, 13-14]。在数量-质量平衡阶段(2004—2010年),国家开始将耕地质量因素纳入耕地占补平衡政策的考核中,在确保耕地数量动态平衡的基础上,提高新增耕地的质量。随着土地利用变化带来的生态问题逐渐加剧,政府和学者逐渐认识到耕地不可忽视的生态功能,例如涵养水源、保护生物多样性和土壤保持等[15-16]。在耕地数量-质量-生态三位一体的保护时期(2011年至今),该时期在加强补充耕地质量建设、管理与监督的基础上,由鼓励耕地开发逐步向土地整理、复垦与综合整治转换,由单一的经济效益目标调整为经济、社会和生态等效益的综合目标。
耕地占补平衡政策的实施对中国国土空间格局产生了深远影响。诸多学者采用统计分析、多因素综合评判等方法量化分析了占补平衡政策的影响作用[11, 17-19]。但是,已有研究大多关注已实施耕地占补平衡政策的现状影响作用,对其未来的潜在影响分析不足。同时,不同占补平衡策略影响作用的差异性亦需要进一步探索,才能为耕地保护政策优化提供依据。
土地利用变化模拟技术是分析政策未来潜在影响作用的有效工具。其中,元胞自动机(cellular automata,CA)由于具有模拟复杂系统时空演化过程的能力,是土地利用变化模拟的最广泛应用方法[20-22]。同时,该类方法能够结合情景分析技术模拟不同政策背景下土地利用格局变化,从而对不同政策进行对比性评估[23-24]。然而,元胞自动机自下而上的特点使其难以有效整合政策规划和宏观需求对不同土地利用变化的影响。因此,诸多学者引入自上而下模型来弥补传统CA模型的缺陷,以便从宏观角度确定土地利用的变化数量,此类模型方法包括趋势外推法、Markov模型[25]、灰色预测模型[26]和系统动力学模型[27]等。尤其是系统动力学模型基于系统内部组成要素的因果关系,能够从系统演化视角分析政策引入对土地利用变化的影响作用[28]。因此,整合系统动力学与元胞自动机模型可为评估耕地占补平衡政策对未来土地利用数量动态和空间格局的潜在影响提供有效的方法支持。目前,尚未有研究顾及多情景的耕地占补平衡策略来进行土地利用变化模拟。
针对上述不足,本研究主要构建顾及耕地占补平衡策略的土地利用变化模拟模型,从数量、质量和生态3个维度出发,评估耕地占补平衡政策对未来耕地规模、质量和生境质量的潜在影响,为平衡耕地保护与建设用地扩张之间的关系提供决策支持。
本文以中国山东省招远市为例,提出了一种基于系统动力学与元胞自动机方法的耕地占补平衡模拟模型,通过设定5个情景:基准情景、数量保护情景、数量-质量保护情景、数量-生态保护情景和数量-质量-生态保护情景,分析未来不同情景下耕地保护政策的有效性。
1 研究数据
招远市地处山东省东北部,位于120°08′E~120°38′E、37°05′N~37°33′N之间,西北临渤海莱州湾。境内以山地和丘陵为主,分别占土地总面积的32.91%和38.43%,而平原面积占比小(22.86%),该地形特征一定程度上限制了耕地资源的发展。同时,招远市作为2019年度全国综合实力百强县市,是中国最重要的黄金产区之一。受采矿活动和城市扩张的影响,招远市土地利用变化显著,尤其是耕地和林地面积明显减少。从2009—2018年,招远市城镇建设用地面积从5.67×103 hm2增长到6.45×103 hm2,农村建设用地面积从1.05×104 hm2增长到1.20×104 hm2,耕地面积从6.22×104 hm2降低至6.14×104 hm2,林地面积从5.11×104 hm2降低至5.00×104 hm2,此外,粮食单产也明显降低,从670 kg/hm2减少至556 kg/hm2。招远市城市扩张与耕地保护之间的矛盾日益加剧。因此,分析该地区耕地占补平衡政策对土地利用变化的潜在影响,对于协调未来城镇发展和耕地保护关系具有重要意义。2018年招远市土地利用现状如图 1所示。
基于2009—2018年的人口数据、经济数据和土地利用面积数据,本文将对未来的土地利用需求进行预测。同时,基于2009年和2018年的实际土地利用数据、道路网络数据、城镇中心点数据和数字高程模型(digital elevation model,DEM)数据,本文将对未来的土地利用变化进行模拟。此外,将根据2018年的归一化植被指数(normalized difference vegetation index,NDVI)数据计算出地类的潜在粮食产量。在处理过程中,所有数据均以土地利用数据为标准,统一到CGCS2000坐标系统下30 m分辨率的栅格影像,并保证行列数相等,详细数据见表 1。
表 1 研究数据Table 1. Description of Research Data数据类别 数据 年份 数据来源 土地利用数据 土地利用数据 2009年、2018年 招远市政府 基础地理数据 铁路、省道、国道、高速公路、城镇中心位置 2018年 OpenStreetMap网站 自然环境数据 DEM 2018年 地理空间数据云平台 NDVI数据 2018年 社会经济数据 人口自然增长率 2009—2018年 《招远市统计年鉴》 城乡人口 2009—2018年 国内生产总值 2009—2018年 农林牧渔产值 2009—2018年 土地利用面积 2009—2018年 2 研究方法
本研究综合考虑了人为因素、自然因素和土地利用系统间相互作用,通过集成自上而下的系统动力学(system dynamics,SD)模型和自下而上的FLUS(future land use simulation)模型,预测多种耕地占补平衡情景下土地利用数量和格局的变化,如图 2所示。
图 2中,SD模型考虑了经济发展、人口变化、各土地利用子系统间的相互作用以及耕地占补平衡政策,用于预测多情景土地利用数量需求。FLUS模型以SD模型结果为约束条件,通过整合土地利用发生概率、元胞自动机自适应惯性与竞争机制,模拟多种耕地占补平衡情景下的土地利用格局,评估耕地占补平衡政策对土地利用变化和耕地保护的影响作用。
2.1 顾及耕地占补平衡策略的系统动力学模型
SD模型主要用来预测土地利用数量结构,其特点是可以通过不同模块和变量之间的反馈回路来分析和模拟复杂系统的行为。土地利用系统受到许多人为和自然因素的影响[29-30],可以通过SD模型来预测其未来的变化数量。本研究的SD模型主要由人口、经济、政策和土地利用4个模块组成,模块的组成变量及其相互之间的作用关系由回归方法和它们的逻辑关系推出(图 2)。人口模块模拟了城乡人口的变化,并与土地利用模块中的城乡建设用地需求有关。经济模块评估了农业、畜牧业、林业和养殖业的生产总值对其相应土地利用需求的影响。同时土地利用模块表现了各土地利用类型之间的作用关系,例如城乡建设用地的扩张会占用周边的自然和半自然栖息地等。特别在政策模块体现了耕地占补平衡政策指导下草地补偿成耕地的过程。
在本研究的5种情景中,基准情景不考虑政策的影响,其土地利用需求以历史规律进行模拟。其他情景均考虑耕地占补平衡政策的影响,其土地利用需求在历史发展的基础上,额外加入草地对耕地的补偿,补偿数量通过基准情景下2018—2030年耕地的减少量以及草地数量变化对耕地的影响来计算。SD模型输出的结果作为土地利用空间分配过程中的数量约束如图 3所示。
2.2 基于潜在粮食产量与生境质量约束的FLUS模型
FLUS模型可以在给定未来土地利用需求的条件下,模拟土地利用空间格局[31]。该模型包括两个步骤:一是通过人工神经网络来训练和估计每种土地利用类型在各栅格上的发生概率;二是将该发生概率与模型的自适应惯性和竞争机制结合得到组合概率,采用轮盘赌方法为每个栅格分配土地利用类型。
人工神经网络(artificial neural network,ANN)通常具有多个输入和输出神经元,包含输入层、隐藏层和输出层3种类型,估计每种土地利用类型的适宜性作为发生概率。在输入层中,输入决定土地利用适宜性的变量,本研究采取人口密度、国内生产总值、坡度、高程,以及与高速公路、铁路、国道、省道和城镇中心的距离9个变量[32]。根据这9个变量和土地利用数据来进行ANN的训练,估计栅格中每种土地利用类型的发生概率。
本文采用潜在粮食产量与生境质量对土地利用变化发生概率进行修正,从而提出耕地质量与生态保护策略。具体使用NDVI反演出潜在粮食产量,公式如下:
$$ {Y}_{i}=\frac{{N}_{i}}{{N}_{0}}\times \stackrel{-}{Y} $$ (1) 式中,$ {Y}_{i} $表示栅格$ i $的潜在粮食产量;$ {N}_{i} $表示栅格$ i $的NDVI值;$ \stackrel{-}{Y} $表示耕地栅格的平均粮食产量;$ {N}_{0} $表示耕地的平均NDVI值[33]。
生境质量通过InVEST模型进行计算,该模型认为生境质量由栖息地的生境适宜性、每种威胁的影响、栖息地与威胁源的距离和栖息地对每种威胁的敏感度4个方面来决定。公式如下:
$$ {Q}_{ij}={H}_{j}\times (1-\frac{{D}_{ij}^{z}}{{D}_{ij}^{z}+{k}^{z}}) $$ (2) 式中,$ {Q}_{ij} $为地类$ j $中栅格$ i $的生境质量;$ {H}_{j} $为地类$ j $的生境适宜性;$ {D}_{ij} $为地类$ j $中栅格$ i $所受威胁水平;$ k $为半饱和常数,默认设置为0.5,通过模型运行获得;$ z $为归一化常数,通常取2.5[34]。本文以城乡建设用地、道路、水体和农田作为栖息地的主要威胁源,根据其对栖息地影响程度的不同,确定不同的权重。参考相关研究[35],本文在InVEST模型中设置了每种地类的生境适宜性、对每种威胁源的权重、威胁源距离衰减函数和对每种威胁源的敏感性这4项参数,计算出生境质量。
遵循潜在粮食产量和生境质量高的草地更容易被补偿为耕地,同时潜在粮食产量和生境质量高的耕地更难被占用的原则,根据各情景的需求,使用潜在粮食产量和生境质量的结果对ANN计算的发生概率进行修正。在草地补偿耕地的过程中,将草地的潜在粮食产量和生境质量结果进行负向归一化,并与除耕地之外的ANN概率相乘,再将各地类的发生概率之和修正为1,其他地类栅格的发生概率不变。在耕地被其他地类占用的过程中,遵循相同原则,不同之处在于将草地栅格换成耕地栅格。计算公式如下:
$$ {U}_{ij}=\frac{{A}_{ij}\times {\tilde{Y}}_{i}\times {\tilde{Q}}_{i}}{{A}_{i1}+\sum\limits_{j=2}^{7}({A}_{ij}\times {\tilde{Y}}_{i}\times {\tilde{Q}}_{i})} $$ (3) 式中,$ {U}_{ij} $是修正后栅格$ i $的地类$ j $发生变化的概率;$ {A}_{ij} $是ANN计算的栅格$ i $的地类$ j $发生概率;$ {\tilde{Y}}_{i} $是栅格$ i $的潜在粮食产量负向归一化结果;$ {\tilde{Q}}_{i} $是栅格$ i $的生境质量负向归一化结果。
将修正的发生概率与邻域效应、土地利用转换成本和土地利用惯性系数相乘得到组合概率,进行土地利用的空间分配。公式如下:
$$ {P}_{ij}^{t}={U}_{ij}\times {\varOmega }_{ij}^{t}\times {R}_{j}^{t}\times (1-{S}_{cj}) $$ (4) 式中,$ {P}_{ij}^{t} $是栅格$ i $在迭代时间$ t $从初始地类到目标地类$ j $的组合概率;$ {U}_{ij} $是修正后栅格$ i $的地类$ j $发生概率;$ {\varOmega }_{ij}^{t} $是地类$ j $在迭代时间$ t $对栅格$ i $的邻域效应;$ {R}_{j}^{t} $是地类$ j $在迭代时间$ t $的惯性系数;$ {S}_{cj} $是从初始地类$ c $到目标地类$ j $的转换成本[36]。模型的参数通过参考其他学者的研究和研究区的现状进行设置[37]。
2.3 土地利用变化情景设置
本研究构建了5种情景:基准情景、耕地数量保护情景、耕地数量-质量保护情景、耕地数量-生态保护情景和耕地数量-质量-生态保护情景,分别以情景a~e表示(见表 2)。以2018年为起始年,分别模拟2030年研究区各情景土地利用格局。
表 2 耕地保护情景设置Table 2. Scenario Design of Farmland Protection情景序号 情景 土地利用数量需求 土地利用变化发生概率 a 基准情景 按现有趋势发展 ANN训练概率 b 耕地数量保护情景 基于基准情景,设置从荒草地每年补偿耕地37.5 hm2 ANN训练概率 c 耕地数量-质量保护情景 式(1)修正ANN训练概率 d 耕地数量-生态保护情景 式(2)修正ANN训练概率 e 耕地数量-质量-生态保护情景 式(3)修正ANN训练概率 1) 情景a为基准情景。该情景不考虑耕地占补平衡政策干预,人口和经济的变化速度都延续了2009—2018年的历史变化趋势。采用SD模型预测2030年的土地利用需求,采用FLUS模型模拟无其他条件约束下2030年的土地利用格局。
2) 情景b为耕地数量保护情景。根据耕地占补平衡政策对耕地数量保护的要求和招远市土地整治文件中的规定,该市后备耕地资源主要为荒草地。因此,在SD模型中设置草地对耕地进行补偿,为确保2030年的耕地数量不少于2018年,设置草地总补偿量为450 hm2,平均每年补偿37.5 hm2。FLUS模型中,设置基本农田、生态红线、有林地、灌木林和除沟渠外的水体为限制条件,先模拟荒草地补偿耕地的结果,再以该结果为基础模拟2030年的土地利用格局。
3) 情景c为耕地数量-质量保护情景。该情景的目的是保护质量较高的耕地,同时确保补偿耕地质量。土地利用数量预测结果与情景b相同。FLUS模型中,利用式(1)对土地利用变化概率进行修正,先模拟草地补偿耕地的结果,再以该结果为基础,模拟2030年的土地利用格局。
4) 情景d为耕地数量-生态保护情景。该情景同时考虑对耕地数量和生态的保护,目的在于保护生境质量较高的耕地,同时补偿能够提升耕地生境质量的草地。土地利用数量预测结果与情景b相同。FLUS模型中,利用式(2)对土地利用变化概率进行修正,并模拟2030年的土地利用格局。
5) 情景e为耕地数量-质量-生态保护情景。该情景同时考虑对耕地数量、质量和生态进行保护,目的在于保证补偿耕地的质量与生态,同时降低质量或生态较好的耕地被其他地类侵占的概率。利用式(3)对土地利用变化概率进行修正,基于此模拟2030年的土地利用格局。
2.4 模型训练与验证
本研究利用整体精度、Kappa系数和FoM (figure of merit)系数来衡量模型对于2009—2018年土地利用变化的准确性。其中,整体精度和Kappa系数通过建立2018年模拟结果与实际土地利用格局的混淆矩阵来计算,混淆矩阵表示预测地类与真实地类之间的转换关系。FoM系数的计算公式如下:
$$ \mathrm{F}\mathrm{o}\mathrm{M}=\frac{B}{A+B+C+D} $$ (5) 式中,A是实际有变化而预测为不变的错误区域;B是实际有变化且预测为变化的正确区域;C是实际有变化而预测为错误地类变化的误差区域;D是实际无变化而预测为变化的错误区域。
验证结果显示整体精度和Kappa系数较高,分别达到0.94和0.92;FoM系数为2.06%,符合Pontius等[38]提出FoM值在1%~59%之间的取值范围。结果表明,该模型可以较好地预测招远市未来的土地利用变化。
3 结果与分析
3.1 不同耕地保护情景下的土地利用格局
2030年,招远市基准情景下耕地、林地、草地、城镇建设用地、农村建设用地、水域和未利用地的面积分别为6.10×104 hm2、4.90×104 hm2、4.38×103 hm2、7.75×103 hm2、1.27×104 hm2、7.13×103 hm2和1.26×103 hm2。相比2018年,耕地、林地和草地的面积分别减少了0.43×103 hm2、0.99×103 hm2和0.58×103 hm2,城镇和农村建设用地分别增加了1.30×103 hm2和0.71×103 hm2,水体和未利用地的面积基本不变。实施耕地占补平衡政策后,与基准情景相比,耕地的面积增加了0.44×103 hm2,草地的面积减少了0.45×103 hm2,其他地类的面积基本不变。城镇、农村建设用地和林地的占用是造成耕地减少的主要原因,而耕地的增加主要来源于草地、林地和农村建设用地。值得注意的是,不同占补平衡策略下的土地利用结构基本相似,原因在于占补平衡过程中耕地质量与生态限制主要为空间约束。2018年现状及不同情景2030年的土地利用面积如图 4所示。
5种情景下2030年土地利用格局的模拟结果如图 5所示。
采用斑块数量(number of patches,NP)、斑块密度(patch density,PD)、形状指数(landscape shape index,LSI)和聚集指数(aggregation index, AI)分析各情景土地利用格局特征,如表 3所示。
表 3 5种情景下2030年主要地类的景观格局指数Table 3. Landscape Pattern Index Under Different Scenarios in 2030用地类型 情景 NP PD LSI AI 耕地 a 7 048 4.92 150.26 81.84 b 6 952 4.85 149.28 82.03 c 7 011 4.89 148.67 82.10 d 6 924 4.83 148.80 82.08 e 6 995 4.88 148.08 82.17 林地 a 10 305 7.19 151.84 79.52 b 10 042 7.01 151.47 79.57 c 10 124 7.07 151.33 79.59 d 10 133 7.07 151.61 79.55 e 10 103 7.05 151.33 79.59 草地 a 8 464 5.91 119.25 46.07 b 8 680 6.06 117.62 43.93 c 8 712 6.08 116.75 44.35 d 8 653 6.04 116.94 44.26 e 8 773 6.12 116.95 44.25 城镇建设用地 a 1 671 1.17 53.59 81.99 b 1 165 0.81 52.70 82.30 c 1 155 0.81 52.52 82.36 d 1 126 0.79 52.71 82.30 e 1 173 0.82 51.29 82.80 农村建设用地 a 4 139 2.89 72.68 80.85 b 4 021 2.81 73.67 80.59 c 4 031 2.81 73.59 80.61 d 4 043 2.82 73.98 80.50 e 4 062 2.84 73.91 80.52 从表 3可以看出,在基准情景下,耕地的斑块数量、斑块密度、形状指数和聚集指数分别为7 048、4.92、150.26和81.84,林地对应的分别为10 305、7.19、151.84和79.52,草地对应的分别为8 464、5.91、119.25和46.07,城镇建设用地对应的分别为1 671、1.17、53.59和81.99,农村建设用地对应的斑分别为4 139、2.89、72.68和80.85。
相比于基准情景,耕地数量保护情景、数量-质量保护情景、数量-生态保护情景和数量-质量-生态保护情景下,耕地斑块数量分别减少了96、37、124和53,斑块密度分别减少了0.07、0.03、0.09和0.04,形状指数分别减少了0.98、1.59、1.46和2.18,聚集指数分别增加了0.19、0.26、0.24和0.33。林地、城镇建设用地和农村建设用地与耕地有着类似的规律,其中城镇建设用地的斑块数量和密度减少最多。草地斑块数量分别增加了216、248、189和309,斑块密度分别增加了0.15、0.17、0.13和0.21,形状指数分别减少了1.63、2.50、2.31和2.30,聚集指数分别减少了2.14、1.72、1.81和1.82。总体来看,耕地占补平衡政策实施以后,除草地外,其他主要地类的斑块数量和密度都有减少;除农村建设用地外,其他主要地类的斑块形状都变得更规则。耕地、林地和城镇建设用地的斑块聚集程度提高,草地和农村建设用地的斑块更破碎。
3.2 不同情景下粮食产量与生境质量变化
不同情景下的耕地粮食产量如图 6所示。
图 6中,在基准情景下,招远市2030年粮食产量的平均值和总产量分别为5.572×103 kg/hm2和3.393×108 kg。相较于基准情景,耕地数量保护情景、耕地数量-质量保护情景、耕地数量-生态保护情景和耕地数量-质量-生态保护情景下,粮食平均产量分别减少了0.11%、0.06%、0.14%和0.09%,粮食总产量分别增加了0.61%、0.66%、0.58%和0.63%。结果表明,耕地占补平衡政策实施后,粮食总产量增加,而平均产量减少。耕地数量-质量保护情景下,粮食平均产量减少得最低,总产量增加得最多,较为有效地保障了耕地质量。而耕地数量-生态保护情景下,粮食平均产量减少得最多,总产量增加得最少,对耕地质量的威胁最大。
本文基于5种情景下模拟的土地利用格局和InVEST模型计算出各情景的生境质量,统计出各情景下每种地类的生境质量总值,如表 4所示。
表 4 5种情景下各地类的生境质量值Table 4. Habitat Quality Values Under Different Scenarios情景 耕地 林地 草地 农村 水体 未利用地 a 270 930.27 542 800.89 29 090.57 14 111.10 71 234.48 139.80 b 272 891.96 542 798.37 26 103.15 14 111.22 71 234.63 140.71 c 272 891.62 542 796.40 26 103.57 14 111.21 71 234.52 140.71 d 272 892.56 542 804.39 26 102.41 14 111.21 71 234.73 140.64 e 272 892.38 542 840.67 26 103.19 14 111.21 71 234.62 140.65 基准情景下,耕地、林地和草地的总生境质量分别为270 930.27、542 800.89和29 090.57。相比于基准情景,耕地数量保护情景、耕地数量-质量保护情景、耕地数量-生态保护情景和耕地数量-质量-生态保护情景下,耕地的总生境质量分别增加了72.406×10-4、72.393×10-4、72.428×10-4和72.421×10-4,草地的总生境质量分别减少了102.694×10-3、102.679×10-3、102.719×10-3、102.692×10-3,林地的总生境质量在耕地数量保护情景和耕地数量-质量保护情景下分别减少了4.643×10-6和8.272×10-6,在耕地数量-生态保护情景和耕地数量-质量-生态保护情景下,分别增加了6.448×10-6和7.329×10-5。此外,各情景下农村建设用地、水体和未利用地的总生境质量基本没有变化,城镇建设用地受到人类活动的影响较大,不利于其他诸多物种的生存和繁育,因此将其作为非生境。整体来看,实施耕地占补平衡政策后,草地补偿为耕地,因此草地的总生境质量比基准情景低,耕地的总生境质量比基准情景高。在耕地数量-生态保护情景下,耕地的总生境质量增加得最多;在耕地数量-质量保护情景下,耕地的生境质量增加得最少。并且在耕地占补平衡政策中加入耕地生态的保护之后,耕地和林地的生境质量都会有一定的提高。同时,本文对耕地占补平衡政策实施情景下招远市各乡镇街道的耕地平均生境质量变化率进行了计算,与基准情景相比,其他4种情景招远市各乡镇街道的耕地平均生境质量变化率如图 7所示。
与基准情景相比,有7个乡镇街道的耕地在所有耕地占补平衡政策实施情景中都发生了退化,并且大多位于招远市的北部和西部,其中辛庄镇的耕地生境质量退化最严重,在4种情景下,耕地平均生境质量变化率分别为-11.89×10-6、-10.23×10-6、-3.72×10-6和-10.65×10-6。只有两个乡镇街道的耕地在所有耕地占补平衡政策实施情景中保持着较好的状态,分别是毕郭镇和阜山镇,均位于招远市的东部。其他乡镇街道在耕地数量-生态和耕地数量-质量-生态保护情景中的耕地生境质量往往有着更好的水平,均位于招远市的中部。因此,在实施耕地占补平衡政策的过程中,招远市西部和北部的乡镇街道需要更加严格的生态保护。
4 讨论
4.1 整合耕地占补平衡政策的模型优势
快速城镇化通常会占用大量的耕地和生态用地[39-40],耕地补偿也大多来源于生态用地[41],并且补偿耕地的生产力和生态服务价值往往要低于被建设用地占用的耕地[42]。为了解决城市扩张和耕地保护之间的矛盾,耕地占补平衡政策不能仅局限于数量上的平衡,还需寻求耕地数量、质量和生态一体化的平衡措施[43]。目前,耕地占补平衡政策的影响评估主要以统计方法等简单模型为主[44-45],少有学者研究该政策内涵改变对未来土地利用变化的系统性影响。因此,本研究从耕地数量、质量和生态3个维度的不同结合方式出发,构建了顾及不同耕地占补平衡策略的土地利用变化模拟模型,评估了耕地占补平衡政策对土地利用格局、粮食安全和生境质量的影响。该模型能够揭示研究区未来不同耕地保护策略的影响作用及其空间异质性,为政策优化提供了量化依据。
4.2 政策建议
本研究中,耕地占补平衡政策对于土地利用数量的影响主要体现在荒草地补偿耕地上,不同层次的耕地占补平衡政策对土地利用结构的影响主要体现在空间结构上。在数量上,基准情景下招远市未来的耕地、林地和草地会持续减少,城镇和农村建设用地会持续增加,水体和未利用地基本保持不变。实施耕地占补平衡政策后,耕地得到了来自草地的补偿,面积可以维持一个稳定的状态,同时草地的面积进一步减少,其他地类的面积基本不变。在空间上,耕地占补平衡政策实施后,草地和农村建设用地的分布呈现更加破碎化的趋势,但有利于提高耕地、林地和城镇建设用地的聚集程度,促进耕地的集约化利用,提高城镇建设用地的用地效率。
此外,相比于基准情景,单一的耕地数量占补平衡政策情景中粮食的总产量会有一定的提升,但其耕地的平均粮食产量和生境质量都较低,其他学者也得到过类似结论[24, 46]。在此基础上,仅加入耕地质量的限制,可以最大程度地保障粮食产量,但对于耕地的生境质量有着更不利的影响。同样地,仅考虑耕地生态的保护,耕地的生境质量会得到更好的保护,但耕地质量的提高会受到制约。由此可见,以上情景都不足以应对耕地质量和生态安全与建设用地扩张之间的矛盾,因此本文提出了耕地数量、质量和生态一体化的保护情景,虽然仅从单一的粮食产量或者生境质量来看该情景都不是最优的,但该情景可以同时保障耕地的质量和生态安全,对招远市未来耕地的可持续发展有着重要意义。
最后,在耕地占补平衡政策实施的4种情景下,招远市的耕地生境质量变化都体现出一定的空间异质性,生境质量退化程度呈现出由东往西递增的趋势。主要原因是耕地占补平衡政策实施后,招远市西部和北部的城镇建设用地扩张或草地补偿强度更大,一定程度上导致了生境的退化。因此,招远市在实施耕地占补平衡政策时,需要同时关注草地补偿和建设用地扩张对区域生态环境造成的不利影响,未来应该采取其他规划政策来进行辅助,以增加耕地的补偿来源,例如进行废弃矿区的复垦和农村居民点的整治等[45]。
4.3 不足与展望
耕地占补平衡政策作为解决建设用地扩张与耕地保护之间矛盾的一项重要政策,在不同的经济发展模式下可能会存在着不同的影响。本研究主要为了评估不同层次的耕地占补平衡政策对未来土地利用变化造成的系统性影响,仅考虑了该政策在招远市现状经济发展模式下的实施情况。然而,招远市作为一个资源型城市,未来可能会面临着产业转型的问题,经济发展模式存在着多种可能性。因此,在今后的研究中,可以评估在多种经济发展模式下,耕地占补平衡政策可能存在的不同影响,从而为研究区的未来发展提供更加全面的规划指导。
5 结语
为了缓解耕地保护和城镇扩张之间的矛盾,本文从耕地数量、质量和生态多个维度系统性地评估了耕地占补平衡政策对土地利用格局和生境质量的影响。与传统研究不同在于,本研究将多情景的耕地占补平衡策略整合进入系统动力学和元胞自动机模型,分别对土地利用变化数量预测和空间格局分配过程进行校正,从而便于分析不同保护策略下耕地规模、质量与生境质量的时空演变情况,为耕地保护政策优化提供科学依据。
结果表明,耕地占补平衡政策可以在一定程度上保障粮食产量,协调耕地保护与城市扩张之间的关系。具体来说,耕地占补平衡政策实施后,耕地和城镇建设用地的空间分布更加集聚。同时,耕地数量-质量保护情景下耕地的粮食产量得到了最大程度的保障,但生境质量退化最严重,耕地数量-生态保护情景下耕地的生境质量保护得最好,但粮食产量最低,耕地数量-质量-生态保护情景下耕地的粮食产量仅低于耕地数量-质量保护情景,生境质量也仅低于耕地数量-生态保护情景,较好地满足了耕地的多目标可持续发展需求。更重要的是,为了减轻城市扩张和耕地补偿对生态环境造成的不利影响,招远市不能仅以荒草地作为耕地唯一补充来源,应该寻求更多的途径对耕地进行提质提量,例如农村居民点整治和废弃工矿用地复垦等。
http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20220113 -
[1] 丁永建, 周成虎, 邵明安, 等. 地表过程研究进展与趋势[J]. 地球科学进展, 2013, 28(4): 407-419. Ding Yongjian, Zhou Chenghu, Shao Ming’an, et al. Studies of Earth Surface Processes: Progress and Prospect[J]. Advances in Earth Science, 2013, 28(4): 407-419.
[2] 丁永建, 张世强, 韩添丁, 等. 由地表过程向地表系统科学研究跨越的机遇与挑战[J]. 地球科学进展, 2014, 29(4): 443-455. Ding Yongjian, Zhang Shiqiang, Han Tianding, et al. Opportunities and Challenges of Studies Across Land Surface Processes to Land Surface System Sciences[J]. Advances in Earth Science, 2014, 29(4): 443-455.
[3] 冷疏影, 宋长青. 陆地表层系统地理过程研究回顾与展望[J]. 地球科学进展, 2005, 20(6): 600-606. Leng Shuying, Song Changqing. Review of Land Surface Geographical Process Study and Prospects in China[J]. Advance in Earth Sciences, 2005, 20(6): 600-606.
[4] Reid W V, Chen D, Goldfarb L, et al. Earth System Science for Global Sustainability: Grand Challenges[J]. Science, 2010, 330(6006): 916-917.
[5] 刘静, 张金玉, 葛玉魁, 等. 构造地貌学: 构造-气候-地表过程相互作用的交叉研究[J]. 科学通报, 2018, 63(30): 3070-3088. Liu Jing, Zhang Jinyu, Ge Yukui, et al. Tectonic Geomorphology: An Interdisciplinary Study of the Interaction Among Tectonic Climatic and Surface Processes[J]. Chinese Science Bulletin, 2018, 63(30): 3070-3088.
[6] 彭萍, 朱立平. 基于野外站网络的青藏高原地表过程观测研究[J]. 科技导报, 2017, 35(6): 97-102. Peng Ping, Zhu Liping. Observations of Land Surface Processes of the Tibetan Plateau Based on the Field Stations Network[J]. Science & Technology Review, 2017, 35(6): 97-102.
[7] 徐自为, 刘绍民, 车涛, 等. 黑河流域地表过程综合观测网的运行、维护与数据质量控制[J]. 资源科学, 2020, 42(10): 1975-1986. Xu Ziwei, Liu Shaomin, Che Tao, et al. Operation and Maintenance and Data Quality Control of the Heihe Integrated Observatory Network[J]. Resources Science, 2020, 42(10): 1975-1986.
[8] Bock Y, Melgar D. Physical Applications of GPS Geodesy: A Review[J]. Reports on Progress in Physics Physical Society (Great Britain), 2016, 79(10): 106801.
[9] 宁津生, 姚宜斌, 张小红. 全球导航卫星系统发展综述[J]. 导航定位学报, 2013, 1(1): 3-8. Ning Jinsheng, Yao Yibin, Zhang Xiaohong. Review of the Development of Global Satellite Navigation System[J]. Journal of Navigation and Positioning, 2013, 1(1): 3-8.
[10] Larson K M. Unanticipated Uses of the Global Positioning System[J]. Annual Review of Earth and Planetary Sciences, 2019, 47: 19-40.
[11] 王敏, 沈正康. 中国大陆现今构造变形: 三十年的GPS观测与研究[J]. 中国地震, 2020, 36(4): 660-683. Wang Min, Shen Zhengkang. Present-Day Tectonic Deformation in Continental China: Thirty Years of GPS Observation and Research[J]. Earthquake Research in China, 2020, 36(4): 660-683.
[12] 甘卫军, 李强, 张锐, 等. 中国大陆构造环境监测网络的建设与应用[J]. 工程研究-跨学科视野中的工程, 2012, 4(4): 324-331. Gan Weijun, Li Qiang, Zhang Rui, et al. Construction and Application of Tectonic and Environmental Observation Network of China’s Mainland[J]. Journal of Engineering Studies, 2012, 4(4): 324-331.
[13] Herring T A, Melbourne T I, Murray M H, et al. Plate Boundary Observatory and Related Networks: GPS Data Analysis Methods and Geodetic Products[J]. Reviews of Geophysics, 2016, 54(4): 759-808.
[14] 王坦, 李瑜, 张锐, 等. GPS在我国地震监测中的应用现状与发展展望[J]. 地震研究, 2021, 44(2): 192-207. Wang Tan, Li Yu, Zhang Rui, et al. GPS in Earthquake Monitoring in China: Current Situation and Prospect[J]. Journal of Seismological Research, 2021, 44(2): 192-207.
[15] Sagiya T. A Decade of GEONET: 1994-2003 the Continuous GPS Observation in Japan and Its Impact on Earthquake Studies[J]. Earth, Planets and Space, 2004, 56(8): xxix-xli.
[16] Shen Z K, King R W, Agnew D C, et al. A Unified Analysis of Crustal Motion in Southern California, 1970-2004: The SCEC Crustal Motion Map[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B11): B11402.
[17] Thatcher W, Foulger G R, Julian B R, et al. Present-Day Deformation Across the Basin and Range Province, Western United States[J]. Science, 1999, 283(5408): 1714-1718.
[18] Wdowinski S, Smith-Konter B, Bock Y, et al. Diffuse Interseismic Deformation Across the Pacific-North America Plate Boundary[J]. Geology, 2007, 35(4): 311.
[19] Sagiya T, Miyazaki S, Tada T. Continuous GPS Array and Present-Day Crustal Deformation of Japan[J]. Pure and Applied Geophysics, 2000, 157(11): 2303-2322.
[20] 牛之俊, 马宗晋, 陈鑫连, 等. 中国地壳运动观测网络[J]. 大地测量与地球动力学, 2002, 22(3): 88-93. Niu Zhijun, Ma Zongjin, Chen Xinlian, et al. Crustal Movement Observation Network of China[J]. Crustal Deformation and Earthquake, 2002, 22(3): 88-93.
[21] Wang M, Shen Z K. Present-Day Crustal Deformation of Continental China Derived from GPS and Its Tectonic Implications[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(2): e2019JB018774.
[22] Wang Q, Zhang P Z, Freymueller J T, et al. Present-Day Crustal Deformation in China Constrained by Global Positioning System Measurements[J]. Science, 2001, 294(5542): 574-577.
[23] 李强, 游新兆, 杨少敏, 等. 中国大陆构造变形高精度大密度GPS监测—现今速度场[J]. 中国科学: 地球科学, 2012, 42(5): 629-632. Li Qiang, You Xinzhao, Yang Shaomin, et al. High-Precision and High-Density GPS Monitoring of Structural Deformation in Chinese Mainland—Current Velocity Field[J]. Scientia Sinica (Terrae), 2012, 42(5): 629-632.
[24] Zhang P Z, Shen Z K, Wang M, et al. Continuous Deformation of the Tibetan Plateau from Global Positioning System Data[J]. Geology, 2004, 32(9): 809.
[25] Zhao B, Huang Y, Zhang C H, et al. Crustal Deformation on the Chinese Mainland During 1998-2014 Based on GPS Data[J]. Geodesy and Geodynamics, 2015, 6(1): 7-15.
[26] Wang W, Qiao X J, Yang S M, et al. Present-Day Velocity Field and Block Kinematics of Tibetan Plateau from GPS Measurements[J]. Geophysical Journal International, 2017, 208(2): 1088-1102.
[27] Zheng G, Wang H, Wright T J, et al. Crustal Deformation in the India-Eurasia Collision Zone from 25 Years of GPS Measurements[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(11): 9290-9312.
[28] Liang S M, Gan W J, Shen C Z, et al. Three-Dimensional Velocity Field of Present-Day Crustal Motion of the Tibetan Plateau Derived from GPS Measurements[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(10): 5722-5732.
[29] Rui X, Stamps D S. A Geodetic Strain Rate and Tectonic Velocity Model for China[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(3): 1280-1297.
[30] 王敏, 沈正康, 牛之俊, 等. 现今中国大陆地壳运动与活动块体模型[J]. 中国科学:地球科学, 2003, 33(S1): 21-32. Wang Min, Shen Zhengkang, Niu Zhijun, et al. Current Crustal Movement and Active Block Model in Chinese Mainland[J]. Scientia Sinica (Terrae), 2003, 33(S1): 21-32.
[31] Shen Z K, Lü J N, Wang M, et al. Contemporary Crustal Deformation Around the Southeast Borderland of the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B11): B11409.
[32] Meade B J. Present-Day Kinematics at the India-Asia Collision Zone[J]. Geology, 2007, 35(1): 81.
[33] Thatcher W. Microplate Model for the Present-Day Deformation of Tibet[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B1): B01401.
[34] Mao A L, Harrison C G A, Dixon T H. Noise in GPS Coordinate Time Series[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B2): 2797-2816.
[35] Dong D, Fang P, Bock Y, et al. Anatomy of Apparent Seasonal Variations from GPS-Derived Site Position Time Series[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B4): 9-16.
[36] Beavan J, Denys P, Denham M, et al. Distribution of Present-Day Vertical Deformation Across the Southern Alps, New Zealand, from 10 Years of GPS Data[J]. Geophysical Research Letters, 2010, 37(16): L16305.
[37] Hao M, Freymueller J T, Wang Q L, et al. Vertical Crustal Movement Around the Southeastern Tibetan Plateau Constrained by GPS and GRACE Data[J]. Earth and Planetary Science Letters, 2016, 437: 1-8.
[38] 赵斌, 聂兆生, 黄勇, 等. 大规模GPS揭示的华北地区现今垂直运动[J]. 大地测量与地球动力学, 2014, 34(5): 35-39. Zhao Bin, Nie Zhaosheng, Huang Yong, et al. Vertical Motion of North China Inferred from Dense GPS Neasurements[J]. Journal of Geodesy and Geodynamics, 2014, 34(5): 35-39.
[39] Kleinherenbrink M, Riva R, Frederikse T. Acomparison of Methods to Estimate Vertical Land Motion Trends from GNSS and Altimetry at Tide Gauge Stations[J]. Ocean Science, 2018, 14(2): 187-204.
[40] Hammond W C, Blewitt G, Kreemer C, et al. GPS Imaging of Global Vertical Land Motion for Studies of Sea Level Rise[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(7): e2021JB022355.
[41] Morton J Y T, van Diggelen F, Spilker J J, et al. Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications[M]. New Jersey: John Wiley & Sons, 2021.
[42] Baldi P, Casula G, Cenni N, et al. GPS-Based Monitoring of Land Subsidence in the Po Plain (Northern Italy)[J]. Earth and Planetary Science Letters, 2009, 288(1/2): 204-212.
[43] Karegar M A, Dixon T H, Engelhart S E. Subsidence Along the Atlantic Coast of North America: Insights from GPS and Late Holocene Relative Sea Level Data[J]. Geophysical Research Letters, 2016, 43(7): 3126-3133.
[44] Bürgmann R, Hilley G, Ferretti A, et al. Resolving Vertical Tectonics in the San Francisco Bay Area from Permanent Scatterer InSAR and GPS Analysis[J]. Geology, 2006, 34(3): 221.
[45] Osmanoğlu B, Dixon T H, Wdowinski S, et al. Mexico City Subsidence Observed with Persistent Scatterer InSAR[J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(1): 1-12.
[46] Du Z Y, Ge L L, Ng A H M, et al. Long-Term Subsidence in Mexico City from 2004 to 2018 Revealed by Five Synthetic Aperture Radar Sensors[J]. Land Degradation & Development, 2019, 30(15): 1785-1801.
[47] Guo J M, Zhou L, Yao C L, et al. Surface Subsidence Analysis by Multi-temporal InSAR and GRACE: A Case Study in Beijing[J]. Sensors, 2016, 16(9): 1495.
[48] Wang J, Howarth J D, McClymont E L, et al. Long-Term Patterns of Hillslope Erosion by Earthquake-Induced Landslides Shape Mountain Landscapes[J]. Science Advances, 2020, 6(23): eaaz6446.
[49] Wang J, Jin Z D, Hilton R G, et al. Controls on Fluvial Evacuation of Sediment from Earthquake-Triggered Landslides[J]. Geology, 2015, 43(2): 115-118.
[50] Wang J, Hilton R G, Jin Z D, et al. The Isotopic Composition and Fluxes of Particulate Organic Carbon Exported from the Eastern Margin of the Tibetan Plateau[J]. Geochimica et Cosmochimica Acta, 2019, 252: 1-15.
[51] Wang J, Jin Z D, Hilton R G, et al. Earthquake-Triggered Increase in Biospheric Carbon Export from a Mountain Belt[J]. Geology, 2016, 44(6): 471-474.
[52] Reid H F. The Mechanics of the Earthquake, the California Earthquake of April 18, 1906[J]. Carnegie Institute, Washington D C, 1910, 2: 3-56
[53] Segall P, Davis J L. GPS Applications for Geodynamics and Earthquake Studies[J]. Annual Review of Earth and Planetary Sciences, 1997, 25: 301-336.
[54] Scholz C H. The Mechanics of Earthquakes and Faulting[M]. Cambridge, UK: Cambridge University Press, 2018.
[55] Harris R A. Large Earthquakes and Creeping Faults[J]. Reviews of Geophysics, 2017, 55(1): 169-198.
[56] Savage J C, Burford R O. Geodetic Determination of Relative Plate Motion in Central California[J]. Journal of Geophysical Research, 1973, 78(5): 832-845.
[57] Savage J C. A Dislocation Model of Strain Accumulation and Release at a Subduction Zone[J]. Journal of Geophysical Research: Solid Earth, 1983, 88(B6): 4984-4996.
[58] McCaffrey R. Time-Dependent Inversion of Three-Component Continuous GPS for Steady and Transient Sources in Northern Cascadia[J]. Geophysical Research Letters, 2009, 36(7): L07304.
[59] Jolivet R, Lasserre C, Doin M P, et al. Shallow Creep on the Haiyuan Fault (Gansu, China) Revealed by SAR Interferometry[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B6): B06401.
[60] Li Y C, Nocquet J M, Shan X J, et al. Heterogeneous Interseismic Coupling Along the Xianshuihe-Xiaojiang Fault System, Eastern Tibet[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(11): e2020JB021187.
[61] Hirose H, Hirahara K, Kimata F, et al. A Slow Thrust Slip Event Following the Two 1996 Hyuganada Earthquakes Beneath the Bungo Channel, Southwest Japan[J]. Geophysical Research Letters, 1999, 26(21): 3237-3240.
[62] Dragert G, Wang K, James T S. A Silent Slip Event on the Deeper Cascadia Subduction Interface[J]. Science, 2001, 292(5521): 1525-1528.
[63] Miller M M, Melbourne T, Johnson D J, et al. Periodic Slow Earthquakes from the Cascadia Subduction Zone[J]. Science, 2002, 295(5564): 2423.
[64] Ohta Y, Freymueller J T, Hreinsdóttir S, et al. A Large Slow Slip Event and the Depth of the Seismogenic Zone in the South Central Alaska Subduction Zone[J]. Earth and Planetary Science Letters, 2006, 247(1/2): 108-116.
[65] Outerbridge K C, Dixon T H, Schwartz S Y, et al. A Tremor and Slip Event on the Cocos-Caribbean Subduction Zone as Measured by a Global Positioning System (GPS) and Seismic Network on the Nicoya Peninsula, Costa Rica[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B10): B10408.
[66] Brown K M, Tryon M D, De Shon H R, et al. Correlated Transient Fluid Pulsing and Seismic Tremor in the Costa Rica Subduction Zone[J]. Earth and Planetary Science Letters, 2005, 238(1/2): 189-203.
[67] Lowry A R. Resonant Slow Fault Slip in Subduction Zones Forced by Climatic Load Stress[J]. Nature, 2006, 442(7104): 802-805.
[68] Shen Z K. Pole-Tide Modulation of Slow Slip Events at Circum-Pacific Subduction Zones[J]. Bulletin of the Seismological Society of America, 2005, 95(5): 2009-2015.
[69] Zhao B, Bürgmann R, Wang D Z, et al. Aseismic Slip and Recent Ruptures of Persistent Asperities Along the Alaska-Aleutian Subduction Zone[J]. Nature Communications, 2022, 13(1): 3098.
[70] 许才军, 王乐洋. 大地测量和地震数据联合反演地震震源破裂过程研究进展[J]. 武汉大学学报(信息科学版), 2010, 35(4): 457-462. Xu Caijun, Wang Leyang. Progress of Joint Inversion of Geodetic and Seismological Data for Seismic Source Rupture Process[J]. Geomatics and Information Science of Wuhan University, 2010, 35(4): 457-462.
[71] Hartzell S, Mendoza C, Ramirez-Guzman L, et al. Rupture History of the 2008 Mw 7.9 Wenchuan, China, Earthquake: Evaluation of Separate and Joint Inversions of Geodetic, Teleseismic, and Strong-Motion Data[J]. Bulletin of the Seismological Society of America, 2013, 103(1): 353-370.
[72] Wald D J, Heaton T H, Hudnut K W. The Slip History of the 1994 Northridge, California, Earthquake Determined from Strong-Motion, Teleseismic, GPS, and Leveling Data[J]. Bulletin of the Seismological Society of America, 1996, 86(1B): S49-S70.
[73] Ma K F. Spatial and Temporal Distribution of Slip for the 1999 Chi-Chi, Taiwan, Earthquake[J]. Bulletin of the Seismological Society of America, 2004, 91(5): 1069-1087.
[74] 许才军, 何平, 温扬茂, 等. 日本2011 Tohoku-Oki Mw 9.0级地震的同震形变及其滑动分布反演: GPS和InSAR约束[J]. 武汉大学学报(信息科学版), 2012, 37(12): 1387-1391. Xu Caijun, He Ping, Wen Yangmao, et al. Coseismic Deformation and Slip Distribution for 2011 Tohoku-Oki Mw 9.0 Earthquake: Constrained by GPS and InSAR[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1387-1391.
[75] Shen Z K, Sun J B, Zhang P Z, et al. Slip Maxima at Fault Junctions and Rupturing of Barriers During the 2008 Wenchuan Earthquake[J]. Nature Geoscience, 2009, 2: 718-724.
[76] Wang Q, Qiao X J, Lan Q G, et al. Rupture of Deep Faults in the 2008 Wenchuan Earthquake and Uplift of the Longmen Shan[J]. Nature Geoscience, 2011, 4: 634-640.
[77] Wang M, Wang F, Jiang X, et al. GPS Determined Coseismic Slip of the 2021 Mw 7.4 Maduo, China, Earthquake and Its Tectonic Implication[J]. Geophysical Journal International, 2021, 228(3): 2048-2055.
[78] Yu S B. Preseismic Deformation and Coseismic Displacements Associated with the 1999 Chi-Chi, Taiwan, Earthquake[J]. Bulletin of the Seismological Society of America, 2004, 91(5): 995-1012.
[79] Larson K M, Bodin P, Gomberg J. Using 1-Hz GPS Data to Measure Deformations Caused by the Denali Fault Earthquake[J]. Science, 2003, 300(5624): 1421-1424.
[80] Bock Y, Prawirodirdjo L, Melbourne T I. Detection of Arbitrarily Large Dynamic Ground Motions with a Dense High-Rate GPS Network[J]. Geophysical Research Letters, 2004, 31(6): L06604.
[81] Ji C, Larson K M, Tan Y, et al. Slip History of the 2003 San Simeon Earthquake Constrained by Combining 1-Hz GPS, Strong Motion, and Teleseismic Data[J]. Geophysical Research Letters, 2004, 31(17): L17608.
[82] Miyazaki S, Larson K M, Choi K, et al. Modeling the Rupture Process of the 2003 September 25 Tokachi-Oki (Hokkaido) Earthquake Using 1-Hz GPS Data[J]. Geophysical Research Letters, 2004, 31(21): L21603.
[83] 殷海涛, 张培震, 甘卫军, 等. 高频GPS测定的汶川Ms 8.0级地震震时近场地表变形过程[J]. 科学通报, 2010, 55(26): 2621-2626. Yin Haitao, Zhang Peizhen, Gan Weijun, et al. Deformation Process of Near-Site Surface During Wenchuan Earthquake with Ms 8.0 Measured by High-Frequency GPS[J]. Chinese Science Bulletin, 2010, 55(26): 2621-2626.
[84] 柴海山, 陈克杰, 魏国光, 等. 北斗三号与超高频GNSS同震形变监测: 以2021年青海玛多Mw 7.4地震为例[J]. 武汉大学学报(信息科学版), 2022, 47(6): 946-954. Chai Haishan, Chen Kejie, Wei Guoguang, et al. Coseismic Deformation Monitoring Using BDS-3 and Ultra-High Rate GNSS: A Case Study of the 2021 Maduo Mw 7.4 Earthquake[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 946-954.
[85] Chen K J, Avouac J P, Geng J H, et al. The 2021 Mw 7.4 Madoi Earthquake: An Archetype Bilateral Slip-Pulse Rupture Arrested at a Splay Fault[J]. Geophysical Research Letters, 2022, 49(2): e2021GL095243.
[86] Delouis B, Nocquet J M, Vallée M. Slip Distribution of the February 27, 2010 Mw = 8.8 Maule Earthquake, Central Chile, from Static and High-Rate GPS, InSAR, and Broadband Teleseismic Data[J]. Geophysical Research Letters, 2010, 37(17): L17305.
[87] Yue H, Lay T. Inversion of High-Rate (1 sps) GPS Data for Rupture Process of the 11 March 2011 Tohoku Earthquake (Mw 9.1)[J]. Geophysical Research Letters, 2011, 38(7): L00G09.
[88] Galetzka J, Melgar D, Genrich J F, et al. Slip Pulse and Resonance of the Kathmandu Basin During the 2015 Gorkha Earthquake, Nepal[J]. Science, 2015, 349(6252): 1091-1095.
[89] Vigny C, Socquet A, Peyrat S, et al. The 2010 Mw 8.8 Maule Megathrust Earthquake of Central Chile, Monitored by GPS[J]. Science, 2011, 332(6036): 1417-1421.
[90] Smith S W, Wyss M. Displacement on the San Andreas Fault Subsequent to the 1966 Parkfield Earthquake[J]. Bulletin of the Seismological Society of America, 1968, 58(6): 1955-1973.
[91] 郭汝梦, 杨浩哲, 汤雄伟, 等. 卫星大地测量成像地震周期形变研究综述[J]. 武汉大学学报(信息科学版), 2022, 47(6): 799-806. Guo Rumeng, Yang Haozhe, Tang Xiongwei, et al. A Review on Satellite Geodesy Applied to Image the Earthquake Cycle Deformation[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 799-806.
[92] Nur A, Mavko G. Postseismic Viscoelastic Rebound[J]. Science, 1974, 183(4121): 204-206.
[93] Lienkaemper J J, DeLong S B, Domrose C J, et al. Afterslip Behavior Following the 2014 M 6.0 South Napa Earthquake with Implications for Afterslip Forecasting on Other Seismogenic Faults[J]. Seismological Research Letters, 2016, 87(3): 609-619.
[94] Guo R M, Zheng Y, Xu J Q, et al. Seismic and Aseismic Fault Slip Associated with the 2017 Mw 8.2 Chiapas, Mexico, Earthquake Sequence[J]. Seismological Research Letters, 2019, 90(3): 1111-1120.
[95] Liu-Zeng J, Zhang Z, Rollins C, et al. Postseismic Deformation Following the 2015 Mw 7.8 Gorkha (Nepal) Earthquake: New GPS Data, Kinematic and Dynamic Models, and the Roles of Afterslip and Viscoelastic Relaxation[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(9): e2020JB019852.
[96] Liu K, Geng J H, Wen Y M, et al. Very Early Postseismic Deformation Following the 2015 Mw 8.3 Illapel Earthquake, Chile Revealed from Kinematic GPS[J]. Geophysical Research Letters, 2022, 49(11): e2022GL098526.
[97] Peltzer G, Rosen P, Rogez F, et al. Postseismic Rebound in Fault Step-Overs Caused by Pore Fluid Flow[J]. Science, 1996, 273(5279): 1202-1204.
[98] Jónsson S, Segall P, Pedersen R, et al. Post-Earthquake Ground Movements Correlated to Pore-Pressure Transients[J]. Nature, 2003, 424(6945): 179-183.
[99] Peltzer G, Rosen P, Rogez F, et al. Poroelastic Rebound Along the Landers 1992 Earthquake Surface Rupture[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30131-30145.
[100] Hu Y, Bürgmann R, Freymueller J T, et al. Contributions of Poroelastic Rebound and a Weak Volcanic Arc to the Postseismic Deformation of the 2011 Tohoku Earthquake[J]. Earth, Planets and Space, 2014, 66(1): 106.
[101] Yang H Z, Guo R M, Zhou J C, et al. Transient Poroelastic Response to Megathrust Earthquakes: A Look at the 2015 Mw 8.3 Illapel, Chile, Event[J]. Geophysical Journal International, 2022, 230(2): 908-915.
[102] Panuntun H, Miyazaki S, Fukuda Y, et al. Probing the Poisson’s Ratio of Poroelastic Rebound Following the 2011 Mw 9.0 Tohoku Earthquake[J]. Geophysical Journal International, 2018, 215(3): 2206-2221.
[103] McCormack K, Hesse M A, Dixon T, et al. Modeling the Contribution of Poroelastic Deformation to Postseismic Geodetic Signals[J]. Geophysical Research Letters, 2020, 47(8): e2020GL086945.
[104] Bürgmann R, Dresen G. Rheology of the Lower Crust and Upper Mantle: Evidence from Rock Mechanics, Geodesy, and Field Observations[J]. Annual Review of Earth and Planetary Sciences, 2008, 36: 531-567.
[105] Sun T, Wang K L, Iinuma T, et al. Prevalence of Viscoelastic Relaxation After the 2011 Tohoku-Oki Earthquake[J]. Nature, 2014, 514(7520): 84-87.
[106] Zhao B, Bürgmann R, Wang D Z, et al. Dominant Controls of Downdip Afterslip and Viscous Relaxation on the Postseismic Displacements Following the Mw 7.9 Gorkha, Nepal, Earthquake[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(10): 8376-8401.
[107] Huang M H, Bürgmann R, Freed A M. Probing the Lithospheric Rheology Across the Eastern Margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2014, 396: 88-96.
[108] Tian Z, Freymueller J T, Yang Z Q. Spatio-Temporal Variations of Afterslip and Viscoelastic Relaxation Following the Mw 7.8 Gorkha (Nepal) Earthquake[J]. Earth and Planetary Science Letters, 2020, 532: 116031.
[109] Wang M, Shen Z K, Wang Y Z, et al. Postseismic Deformation of the 2008 Wenchuan Earthquake Illuminates Lithospheric Rheological Structure and Dynamics of Eastern Tibet[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(9): e2021JB022399.
[110] Kiehl J T, Trenberth K E. Earth’s Annual Global Mean Energy Budget[J]. Bulletin of the American Meteorological Society, 1997, 78(2): 197-208.
[111] Bevis M, Businger S, Chiswell S, et al. GPS Me-teorology: Mapping Zenith Wet Delays Onto Precipitable Water[J]. Journal of Applied Meteorology, 1994, 33(3): 379-386.
[112] Bevis M, Businger S, Herring T A, et al. GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System[J]. Journal of Geophysical Research: Atmospheres, 1992, 97(D14): 15787-15801.
[113] Rocken C, Hove T V, Johnson J, et al. GPS/STORM—GPS Sensing of Atmospheric Water Vapor for Meteorology[J]. Journal of Atmospheric and Oceanic Technology, 1995, 12(3): 468-478.
[114] Rocken C, Ware R, Van Hove T, et al. Sensing Atmospheric Water Vapor with the Global Positioning System[J]. Geophysical Research Letters, 1993, 20(23): 2631-2634.
[115] Duan J P, Bevis M, Fang P, et al. GPS Meteorology: Direct Estimation of the Absolute Value of Precipitable Water[J]. Journal of Applied Meteorology, 1996, 35(6): 830-838.
[116] Flores A, Ruffini G, Rius A. 4D Tropospheric Tomography Using GPS Slant Wet Delays[J]. Annales Geophysicae, 2000, 18(2): 223-234.
[117] Haji Aghajany S, Amerian Y. Three Dimensional Ray Tracing Technique for Tropospheric Water Vapor Tomography Using GPS Measurements[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 164: 81-88.
[118] Braun J, Rocken C, Liljegren J. Comparisons of Line-of-Sight Water Vapor Observations Using the Global Positioning System and a Pointing Microwave Radiometer[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(5): 606-612.
[119] Wang Y C, Ding N, Zhang Y, et al. A New Approach of the Global Navigation Satellite System Tomography for any Size of GNSS Network[J]. Remote Sensing, 2020, 12(4): 617.
[120] 刘敏, 郭鹏, 叶其欣, 等. 上海地区地基GPS水汽三维层析技术和初步应用[J]. 天文学报, 2010, 51(3): 299-308. Liu Min, Guo Peng, Ye Qixin, et al. The 3D Tomography Technique and Application of Water Vapor Using Ground-Based GPS Networks in Shanghai[J]. Acta Astronomica Sinica, 2010, 51(3): 299-308.
[121] 张双成, 刘经南, 叶世榕, 等. 顾及双差残差反演GPS信号方向的斜路径水汽含量[J]. 武汉大学学报(信息科学版), 2009, 34(1): 100-104. Zhang Shuangcheng, Liu Jingnan, Ye Shirong, et al. Retrieval of Water Vapor Along the GPS Slant Path Based on Double-Differenced Residuals[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 100-104.
[122] Landskron D, Böhm J. VMF3/GPT3: Refined Discrete and Empirical Troposphere Mapping Functions[J]. Journal of Geodesy, 2018, 92(4): 349-360.
[123] Leandro R, Santos M, Langley R. UNB Neutral Atmosphere Models: Development and Performance [C]//National Technical Meeting of the Institute of Navigation, California, USA, 2006.
[124] Li W, Yuan Y B, Ou J K, et al. A New Global Zenith Tropospheric Delay Model IGGtrop for GNSS Applications[J]. Chinese Science Bulletin, 2012, 57(17): 2132-2139.
[125] Boehm J, Niell A, Tregoning P, et al. Global Mapping Function (GMF): A New Empirical Mapping Function Based on Numerical Weather Model Data[J]. Geophysical Research Letters, 2006, 33(7): L07304.
[126] Boehm J, Schuh H. Vienna Mapping Functions in VLBI Analyses[J]. Geophysical Research Letters, 2004, 31(1): L01603.
[127] Boehm J, Werl B, Schuh H. Troposphere Mapping Functions for GPS and Very Long Baseline Interfero-metry from European Centre for Medium-Range Weather Forecasts Operational Analysis Data[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B2): B02406.
[128] Ding M H. A Second Generation of the Neural Network Model for Predicting Weighted Mean Temperature[J]. GPS Solutions, 2020, 24(2): 61.
[129] Huang L K, Liu L L, Chen H, et al. An Improved Atmospheric Weighted Mean Temperature Model and Its Impact on GNSS Precipitable Water Vapor Estimates for China[J]. GPS Solutions, 2019, 23(2): 51.
[130] Ding M H. A Neural Network Model for Predicting Weighted Mean Temperature[J]. Journal of Geodesy, 2018, 92(10): 1187-1198.
[131] Yao Y B, Zhu S, Yue S Q. A Globally Applicable, Season-Specific Model for Estimating the Weighted Mean Temperature of the Atmosphere[J]. Journal of Geodesy, 2012, 86(12): 1125-1135.
[132] Wang J H, Zhang L Y, Dai A G. Global Estimates of Water-Vapor-Weighted Mean Temperature of the Atmosphere for GPS Applications[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D21): e2005jd006215.
[133] 曲建光, 刘基余, 韩中元. 利用天顶对流层延迟数据直接推算水汽含量的研究[J]. 武汉大学学报(信息科学版), 2005, 30(7): 625-628. Qu Jianguang, Liu Jiyu, Han Zhongyuan. Research on the Calculating Directly Water Vapor Value Using Zenith Tropospheric Delay Data[J]. Geomatics and Information Science of Wuhan University, 2005, 30(7): 625-628.
[134] 王勇, 刘严萍, 柳林涛, 等. 区域GPS网对流层延迟直接推算可降水量研究[J]. 热带气象学报, 2007, 23(5): 510-514. Wang Yong, Liu Yanping, Liu Lintao, et al. The Study of Directly Calculating Precipitable Water Vapor with Zenith Tropospheric Delay of GPS Network[J]. Journal of Tropical Meteorology, 2007, 23(5): 510-514.
[135] 王勇, 刘严萍, 柳林涛, 等. 无气象要素的GPS对流层延迟推算可降水量的研究[J]. 测绘科学, 2007, 32(3): 122-124. Wang Yong, Liu Yanping, Liu Lintao, et al. The Study of Calculating Precipitable Water Vapor Using GPS Zenith Tropospheric Delay Without Meteorological Data[J]. Science of Surveying and Mapping, 2007, 32(3): 122-124.
[136] 王勇, 柳林涛, 郝晓光, 等. 武汉地区GPS气象网应用研究[J]. 测绘学报, 2007, 36(2): 141-145. Wang Yong, Liu Lintao, Hao Xiaoguang, et al. The Application Study of the GPS Meteorology Network in Wuhan Region[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(2): 141-145.
[137] 易正晖, 王帅民, 王勇, 等. GNSS对流层延迟推算可降水量的季节转换模型研究[J]. 大地测量与地球动力学, 2017, 37(8): 830-834. Yi Zhenghui, Wang Shuaimin, Wang Yong, et al. Research on Seasonal Transition Model of GNSS Zenith Tropospheric Delay Calculating Precipitable Water Vapor[J]. Journal of Geodesy and Geodynamics, 2017, 37(8): 830-834.
[138] Hagemann S, Bengtsson L, Gendt G. On the Determination of Atmospheric Water Vapor from GPS Measurements[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D21): e2002jd003235.
[139] Wang Y, Yang K, Pan Z Y, et al. Evaluation of Precipitable Water Vapor from Four Satellite Products and Four Reanalysis Datasets Against GPS Measurements on the Southern Tibetan Plateau[J]. Journal of Climate, 2017, 30(15): 5699-5713.
[140] Zhang W X, Lou Y D, Huang J F, et al. Multiscale Variations of Precipitable Water over China Based on 1999-2015 Ground-Based GPS Observations and Evaluations of Reanalysis Products[J]. Journal of Climate, 2018, 31(3): 945-962.
[141] Zhang Y L, Cai C S, Chen B Y, et al. Consistency Evaluation of Precipitable Water Vapor Derived from ERA5, ERA-Interim, GNSS, and Radiosondes over China[J]. Radio Science, 2019, 54(7): 561-571.
[142] Xiong Z H, Sang J Z, Sun X G, et al. Comparisons of Performance Using Data Assimilation and Data Fusion Approaches in Acquiring Precipitable Water Vapor: A Case Study of a Western United States of America Area[J]. Water, 2020, 12(10): 2943.
[143] Zhang B, Yao Y B, Xin L Y, et al. Precipitable Water Vapor Fusion: An Approach Based on Spherical Cap Harmonic Analysis and Helmert Variance Component Estimation[J]. Journal of Geodesy, 2019, 93(12): 2605-2620.
[144] Zhao Q Z, Du Z, Yao W Q, et al. Hybrid Precipitable Water Vapor Fusion Model in China[J]. Journal of Atmospheric and Solar⁃Terrestrial Physics, 2020, 208: 105387.
[145] van Dam T M, Herring T A. Detection of Atmospheric Pressure Loading Using Very Long Baseline Interferometry Measurements[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B3): 4505-4517.
[146] van Dam T M, Wahr J, Chao Y, et al. Predictions of Crustal Deformation and of Geoid and Sea-Level Variability Caused by Oceanic and Atmospheric Loading[J]. Geophysical Journal International, 1997, 129(3): 507-517.
[147] 龚国栋, 花向红, 贺小星, 等. GPS坐标时间序列中地表环境负载效应区域特征分析[J]. 大地测量与地球动力学, 2017, 37(9): 961-967. Gong Guodong, Hua Xianghong, He Xiaoxing, et al. Analysis of Regional Characteristics of Environment Load Effect in GPS Coordinate Time Series[J]. Journal of Geodesy and Geodynamics, 2017, 37(9): 961-967.
[148] Dam T V, Collilieux X, Wuite J, et al. Nontidal Ocean Loading: Amplitudes and Potential Effects in GPS Height Time Series[J]. Journal of Geodesy, 2012, 86(11): 1043-1057.
[149] 刘经南, 张化疑, 刘焱雄, 等. GNSS研究海潮负荷效应进展[J]. 武汉大学学报(信息科学版), 2016, 41(1): 9-14. Liu Jingnan, Zhang Huayi, Liu Yanxiong, et al. Progress of Ocean Tide Loading Inversion Based on GNSS[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 9-14.
[150] Dach R, Böhm J, Lutz S, et al. Evaluation of the Impact of Atmospheric Pressure Loading Modeling on GNSS Data Analysis[J]. Journal of Geodesy, 2011, 85(2): 75-91.
[151] Tregoning P, van Dam T M. Atmospheric Pressure Loading Corrections Applied to GPS Data at the Observation Level[J]. Geophysical Research Letters, 2005, 32(22): L22310.
[152] Tregoning P, van Dam T M. Effects of Atmospheric Pressure Loading and Seven-Parameter Transformations on Estimates of Geocenter Motion and Station Heights from Space Geodetic Observations[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B3): B03408.
[153] Liu L, Khan S A, van Dam T M, et al. Annual Variations in GPS-Measured Vertical Displacements near Upernavik Isstrøm (Greenland) and Contributions from Surface Mass Loading[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(1): 677-691.
[154] Williams S D P, Penna N T. Non-tidal Ocean Loading Effects on Geodetic GPS Heights[J]. Geophysical Research Letters, 2011, 38(9): L09314.
[155] Martens H R, Argus D F, Norberg C, et al. Atmospheric Pressure Loading in GPS Positions: Dependency on GPS Processing Methods and Effect on Assessment of Seasonal Deformation in the Contiguous USA and Alaska[J]. Journal of Geodesy, 2020, 94(12): 115.
[156] 陆桂华, 何海. 全球水循环研究进展[J]. 水科学进展, 2006, 17(3): 419-424. Lu Guihua, He Hai. View of Global Hydrological Cycle[J]. Advances in Water Science, 2006, 17(3): 419-424.
[157] Bettinelli P, Avouac J P, Flouzat M, et al. Seasonal Variations of Seismicity and Geodetic Strain in the Himalaya Induced by Surface Hydrology[J]. Earth and Planetary Science Letters, 2008, 266(3/4): 332-344.
[158] Argus D F, Fu Y N, Landerer F W. Seasonal Variation in Total Water Storage in California Inferred from GPS Observations of Vertical Land Motion[J]. Geophysical Research Letters, 2014, 41(6): 1971-1980.
[159] Borsa A A, Agnew D C, Cayan D R. Ongoing Drought-Induced Uplift in the Western United States[J]. Science, 2014, 345(6204): 1587-1590.
[160] Argus D F, Landerer F W, Wiese D N, et al. Sustained Water Loss in California’s Mountain Ranges During Severe Drought from 2012 to 2015 Inferred from GPS[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(12): 10559-10585.
[161] Jiang W P, Yuan P, Chen H, et al. Annual Variations of Monsoon and Drought Detected by GPS: A Case Study in Yunnan, China[J]. Scientific Reports, 2017, 7(1): 5874.
[162] Zhan W, Li F, Hao W F, et al. Regional Characte-ristics and Influencing Factors of Seasonal Vertical Crustal Motions in Yunnan, China[J]. Geophysical Journal International, 2017, 210(3): 1295-1304.
[163] 盛传贞, 甘卫军, 梁诗明, 等. 滇西地区GPS时间序列中陆地水载荷形变干扰的GRACE分辨与剔除[J]. 地球物理学报, 2014, 57(1): 42-52. Sheng Chuanzhen, Gan Weijun, Liang Shiming, et al. Identification and Elimination of Non-tectonic Crustal Deformation Caused by Land Water from GPS Time Series in the Western Yunnan Province Based on GRACE Observations[J]. Chinese Journal of Geophysics, 2014, 57(1): 42-52.
[164] 丁一航, 黄丁发, 师悦龄, 等. 利用GPS和GRACE分析四川地表垂向位移变化[J]. 地球物理学报, 2018, 61(12): 4777-4788. Ding Yihang, Huang Dingfa, Shi Yueling, et al. Determination of Vertical Surface Displacements in Sichuan Using GPS and GRACE Measurements[J]. Chinese Journal of Geophysics, 2018, 61(12): 4777-4788.
[165] 胡顺强, 王坦, 管雅慧, 等. 利用GPS和水文负载模型研究云南地区垂向季节性波动变化和构造变形[J]. 地球物理学报, 2021, 64(8): 2613-2630. Hu Shunqiang, Wang Tan, Guan Yahui, et al. Analyzing the Seasonal Fluctuation and Vertical Deformation in Yunnan Province Based on GPS Measurement and Hydrological Loading Model[J]. Chinese Journal of Geophysics, 2021, 64(8): 2613-2630.
[166] Borsa A A, Mencin D, van Dam T M. The Weight of a Storm: What Observations of Earth Surface Deformation Can Tell Us About Hurricane Harvey[J].AGU Fall Meeting Abstracts, 2017, 23: 2872.
[167] 汪汉胜, Wu Patrick, 许厚泽. 冰川均衡调整(GIA)的研究[J]. 地球物理学进展, 2009, 24(6): 1958-1967. Wang Hansheng, Wu Patrick, Xu Houze. A Review of Research in Glacial Isostatic Adjustment[J]. Progress in Geophysics, 2009, 24(6): 1958-1967.
[168] Jiang Y, Dixon T H, Wdowinski S. Accelerating Uplift in the North Atlantic Region as an Indicator of Ice Loss[J]. Nature Geoscience, 2010, 3: 404-407.
[169] Khan S A, Sasgen I, Bevis M, et al. Geodetic Measurements Reveal Similarities Between Post–Last Glacial Maximum and Present-Day Mass Loss from the Greenland Ice Sheet[J]. Science Advances, 2016, 2(9): e1600931.
[170] Bevis M, Wahr J, Khan S A, et al. Bedrock Displacements in Greenland Manifest Ice Mass Variations, Climate Cycles and Climate Change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(30): 11944-11948.
[171] Larsen C F, Motyka R J, Freymueller J T, et al. Rapid Viscoelastic Uplift in Southeast Alaska Caused by Post-Little Ice Age Glacial Retreat[J]. Earth and Planetary Science Letters, 2005, 237(3/4): 548-560.
[172] Elliott J L, Larsen C F, Freymueller J T, et al. Tectonic Block Motion and Glacial Isostatic Adjustment in Southeast Alaska and Adjacent Canada Constrained by GPS Measurements[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B9): B09407.
[173] Hu Y, Freymueller J T. Geodetic Observations of Time-Variable Glacial Isostatic Adjustment in Southeast Alaska and Its Implications for Earth Rheology[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(9): 9870-9889.
[174] Zwally H J, Abdalati W, Herring T, et al. Surface Melt-Induced Acceleration of Greenland Ice-Sheet Flow[J]. Science, 2002, 297(5579): 218-222.
[175] Das S B, Joughin I, Behn M D, et al. Fracture Propagation to the Base of the Greenland Ice Sheet During Supraglacial Lake Drainage[J]. Science, 2008, 320(5877): 778-781.
[176] Pratt M J, Winberry J P, Wiens D A, et al. Seismic and Geodetic Evidence for Grounding-Line Control of Whillans Ice Stream Stick-Slip Events[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(2): 333-348.
[177] 艾松涛, 王泽民, 鄂栋臣, 等. 利用GPS的北极冰川运动监测与分析[J]. 武汉大学学报(信息科学版), 2012, 37(11): 1337-1340. Ai Songtao, Wang Zemin, Dongchen E, et al. Surface Movement Research of Arctic Glaciers Using GPS Method[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1337-1340.
[178] Bartholomaus T C, Anderson R S, Anderson S P. Response of Glacier Basal Motion to Transient Water Storage[J]. Nature Geoscience, 2008, 1: 33-37.
[179] Roeoesli C, Helmstetter A, Walter F, et al. Meltwater Influences on Deep Stick-Slip Icequakes near the Base of the Greenland Ice Sheet[J]. Journal of Geophysical Research: Earth Surface, 2016, 121(2): 223-240.
[180] Liu Z, Dong D N, Lundgren P. Constraints on Time-Dependent Volcanic Source Models at Long Valley Caldera from 1996 to 2009 Using InSAR and Geodetic Measurements[J]. Geophysical Journal International, 2011, 187(3): 1283-1300.
[181] Mattia M, Rossi M, Guglielmino F, et al. The Shallow Plumbing System of Stromboli Island as Imaged from 1 Hz Instantaneous GPS Positions[J]. Geophysical Research Letters, 2004, 31(24): L24610.
[182] Sigmundsson F, Hreinsdóttir S, Hooper A, et al. Intrusion Triggering of the 2010 Eyjafjallajökull Explosive Eruption[J]. Nature, 2010, 468(7322): 426-430.
[183] 顾国华, 王武星. GPS测得的2018年夏威夷6.9级地震与火山喷发地壳运动[J]. 武汉大学学报(信息科学版), 2019, 44(8): 1191-1197. Gu Guohua, Wang Wuxing. Crustal Motions Observed from GPS Observations for the M 6.9 Earthquake in Hawaii and the Eruption of the Kilauea Volcano in 2018[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1191-1197.
[184] 张恒荣, 刘国明, 武成智, 等. 长白山天池火山监测与火山活动状态的初步分析[J]. 地震地质, 2003, 25(S1): 109-120. Zhang Hengrong, Liu Guoming, Wu Chengzhi, et al. Preliminary Study on the Active State of Changbaishan Tianchi Volcano[J]. Seismology and Geology, 2003, 25(S1): 109-120.
[185] 陈国浒, 单新建, M.Moon Wooil, 等. 基于InSAR、GPS形变场的长白山地区火山岩浆囊参数模拟研究[J]. 地球物理学报, 2008, 51(4): 1085-1092. Chen Guohu, Shan Xinjian, Moon W M, et al. A Modeling of the Magma Chamber Beneath the Changbai Mountains Volcanic Area Constrained by InSAR and GPS Derived Deformation[J]. Chinese Journal of Geophysics, 2008, 51(4): 1085-1092.
[186] 王凡, 沈正康, 王阎昭, 等. 2011年3月11日日本宫城Mw 9.0级地震对其周边地区火山活动的影响[J]. 科学通报, 2011, 56(14): 1080-1083. Wang Fan, Shen Zhengkang, Wang Yanzhao, et al. Influence of March 11th, 2011 Miyagi Mw 9.0 Earthquake on Volcanic Activities in Its Surrounding Areas[J]. Chinese Science Bulletin, 2011, 56(14): 1080-1083.
[187] Biggs J, Pritchard M E. Global Volcano Monitoring: What Does It Mean when Volcanoes Deform?[J]. Elements, 2017, 13(1): 17-22.
[188] Dzurisin D, Lisowski M, Wicks C W. Continuing Inflation at Three Sisters Volcanic Center, Central Oregon Cascade Range, USA, from GPS, Leveling, and InSAR Observations[J]. Bulletin of Volcanology, 2009, 71(10): 1091-1110.
[189] Parks M M, Biggs J, England P, et al. Evolution of Santorini Volcano Dominated by Episodic and Rapid Fluxes of Melt from Depth[J]. Nature Geoscience, 2012, 5: 749-754.
[190] Annen C, Blundy J D, Sparks R S J. The Genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones[J]. Journal of Petrology, 2006, 47(3): 505-539.
[191] Wiebe R A, Collins W J. Depositional Features and Stratigraphic Sections in Granitic Plutons: Implications for the Emplacement and Crystallization of Granitic Magma[J]. Journal of Structural Geology, 1998, 20(9/10): 1273-1289.
[192] Head M, Hickey J, Gottsmann J, et al. The Influence of Viscoelastic Crustal Rheologies on Volcanic Ground Deformation: Insights from Models of Pressure and Volume Change[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(8): 8127-8146.
[193] Townsend M. Linking Surface Deformation to Thermal and Mechanical Magma Chamber Processes[J]. Earth and Planetary Science Letters, 2022, 577: 117272.
[194] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3): 433-454. Huang Runqiu. Large-Scale Landslides and Their Sliding Mechanisms in China Since the 20th Century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433-454.
[195] 张铎, 吴中海, 李家存, 等. 国内外地震滑坡研究综述[J]. 地质力学学报, 2013, 19(3): 225-241. Zhang Duo, Wu Zhonghai, Li Jiacun, et al. An Overview on Earthquake-Induced Landslide Research[J]. Journal of Geomechanics, 2013, 19(3): 225-241.
[196] Yin Y P, Wang F W, Sun P. Landslide Hazards Triggered by the 2008 Wenchuan Earthquake, Sichuan, China[J]. Landslides, 2009, 6(2): 139-152.
[197] Xu C, Xu X W, Yao X, et al. Three (Nearly) Complete Inventories of Landslides Triggered by the May 12, 2008 Wenchuan Mw 7.9 Earthquake of China and Their Spatial Distribution Statistical Analysis[J]. Landslides, 2014, 11(3): 441-461.
[198] Delbridge B G, Bürgmann R, Fielding E, et al. Three-Dimensional Surface Deformation Derived from Airborne Interferometric UAVSAR: Application to the Slumgullion Landslide[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(5): 3951-3977.
[199] Malet J P, Maquaire O, Calais E. The Use of Global Positioning System Techniques for the Continuous Monitoring of Landslides: Application to the Super-Sauze Earthflow (Alpes-de-Haute-Provence, France)[J]. Geomorphology, 2002, 43(1/2): 33-54.
[200] Hsu Y J, Chen R F, Lin C W, et al. Seasonal, Long-Term, and Short-Term Deformation in the Central Range of Taiwan Induced by Landslides[J]. Geology, 2014, 42(11): 991-994.
[201] Wang G Q. GPS Landslide Monitoring: Single Base Vs. Network Solutions—A Case Study Based on the Puerto Rico and Virgin Islands Permanent GPS Network[J]. Journal of Geodetic Science, 2011, 1(3): 191-203.
[202] Wu J H, Lin H M. Analyzing the Shear Strength Parameters of the Chiu-fen-erh-shan Landslide: Integrating Strong-Motion and GPS Data to Determine the Best-Fit Accelerogram[J]. GPS Solutions, 2009, 13(2): 153-163.
[203] Axelrad P, Comp C J, Macdoran P F. SNR-Based Multipath Error Correction for GPS Differential Phase[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(2): 650-660.
[204] 金双根, 张勤耘, 钱晓东. 全球导航卫星系统反射测量(GNSS+R)最新进展与应用前景[J]. 测绘学报, 2017, 46(10): 1389-1398. Jin Shuanggen, Zhang Qinyun, Qian Xiaodong. New Progress and Application Prospects of Global Navigation Satellite System Reflectometry (GNSS+R)[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1389-1398.
[205] Larson K M. GPS Interferometric Reflectometry: Applications to Surface Soil Moisture, Snow Depth, and Vegetation Water Content in the Western United States[J]. WIREs Water, 2016, 3(6): 775-787.
[206] Jacobson M D. Dielectric-Covered Ground Reflectors in GPS Multipath Reception—Theory and Measurement[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(3): 396-399.
[207] Larson K M, Gutmann E D, Zavorotny V U, et al. Can We Measure Snow Depth with GPS Receivers?[J]. Geophysical Research Letters, 2009, 36(17): L17502.
[208] Nievinski F G, Larson K M. Inverse Modeling of GPS Multipath for Snow Depth Estimation: Part I: Formulation and Simulations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6555-6563.
[209] Nievinski F G, Larson K M. Inverse Modeling of GPS Multipath for Snow Depth Estimation: Part II: Application and Validation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6564-6573.
[210] McCreight J L, Small E E, Larson K M. Snow Depth, Density, and SWE Estimates Derived from GPS Reflection Data: Validation in the Western U. S[J]. Water Resources Research, 2014, 50(8): 6892-6909.
[211] 王佳彤, 胡羽丰, 李振洪, 等. 利用GPS-IR技术快速估计雪水当量[J]. 武汉大学学报(信息科学版), 2021, 46(11): 1666-1676. Wang Jiatong, Hu Yufeng, Li Zhenhong, et al. Rapid Estimation of Snow Water Equivalent Using GPS-IR Observations[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1666-1676.
[212] Zhang Z Y, Guo F, Zhang X H. Triple-Frequency Multi-GNSS Reflectometry Snow Depth Retrieval by Using Clustering and Normalization Algorithm to Compensate Terrain Variation[J]. GPS Solutions, 2020, 24(2): 52.
[213] Wang J W, Yuan Q Q, Shen H F, et al. Estimating Snow Depth by Combining Satellite Data and Ground-Based Observations over Alaska: A Deep Learning Approach[J]. Journal of Hydrology, 2020, 585: 124828.
[214] Larson K M, Small E E, Gutmann E, et al. Using GPS Multipath to Measure Soil Moisture Fluctuations: Initial Results[J]. GPS Solutions, 2008, 12(3): 173-177.
[215] Larson K M, Small E E, Gutmann E D, et al. Use of GPS Receivers as a Soil Moisture Network for Water Cycle Studies[J]. Geophysical Research Letters, 2008, 35(24): L24405.
[216] Chew C C, Small E E, Larson K M, et al. Effects of Near-Surface Soil Moisture on GPS SNR Data: Development of a Retrieval Algorithm for Soil Moisture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 537-543.
[217] Small E E, Larson K M, Chew C C, et al. Validation of GPS-IR Soil Moisture Retrievals: Comparison of Different Algorithms to Remove Vegetation Effects[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(10): 4759-4770.
[218] Edokossi K, Calabia A, Jin S G, et al. GNSS-Reflectometry and Remote Sensing of Soil Moisture: A Review of Measurement Techniques, Methods, and Applications[J]. Remote Sensing, 2020, 12(4): 614.
[219] Small E E, Larson K M, Braun J J. Sensing Vegetation Growth with Reflected GPS Signals[J]. Geophysical Research Letters, 2010, 37(12): L12401.
[220] Wan W, Larson K M, Small E E, et al. Using Geodetic GPS Receivers to Measure Vegetation Water Content[J]. GPS Solutions, 2015, 19(2): 237-248.
[221] Larson K M, Small E E. Normalized Microwave Reflection Index: A Vegetation Measurement Derived from GPS Networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(5): 1501-1511.
[222] Small E E, Larson K M, Smith W K. Normalized Microwave Reflection Index: Validation of Vegetation Water Content Estimates from Montana Grasslands[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(5): 1512-1521.
[223] Evans S G, Small E E, Larson K M. Comparison of Vegetation Phenology in the Western USA Determined from Reflected GPS Microwave Signals and NDVI[J]. International Journal of Remote Sensing, 2014, 35(9): 2996-3017.
[224] Zhang S C, Wang T, Wang L X, et al. Evaluation of GNSS-IR for Retrieving Soil Moisture and Vegetation Growth Characteristics in Wheat Farmland[J]. Journal of Surveying Engineering, 2021, 147(3): 04021009.
[225] Wöppelmann G, Marcos M. Vertical Land Motion as a Key to Understanding Sea Level Change and Variability[J]. Reviews of Geophysics, 2016, 54(1): 64-92.
[226] Larson K M, Löfgren J S, Haas R. Coastal Sea Level Measurements Using a Single Geodetic GPS Receiver[J]. Advances in Space Research, 2013, 51(8): 1301-1310.
[227] Larson K M, Ray R D, Nievinski F G, et al. The Accidental Tide Gauge: A GPS Reflection Case Study from Kachemak Bay, Alaska[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1200-1204.
[228] Larson K M, Ray R D, Williams S D P. A 10-Year Comparison of Water Levels Measured with a Geodetic GPS Receiver Versus a Conventional Tide Gauge[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(2): 295-307.
[229] Löfgren J S, Haas R. Sea Level Measurements Using Multi-frequency GPS and GLONASS Observations[J]. EURASIP Journal on Advances in Signal Processing, 2014, 2014(1): 50.
[230] Wang X L, Zhang Q, Zhang S C. Water Levels Measured with SNR Using Wavelet Decomposition and Lomb-Scargle Periodogram[J]. GPS Solutions, 2017, 22(1): 22.
[231] Wang X L, Zhang Q, Zhang S C. Sea Level Estimation from SNR Data of Geodetic Receivers Using Wavelet Analysis[J]. GPS Solutions, 2018, 23(1): 6.
[232] Peng D J, Feng L J, Larson K M, et al. Measuring Coastal Absolute Sea-Level Changes Using GNSS Interferometric Reflectometry[J]. Remote Sensing, 2021, 13(21): 4319.
[233] Peng D J, Hill E M, Li L L, et al. Application of GNSS Interferometric Reflectometry for Detecting Storm Surges[J]. GPS Solutions, 2019, 23(2): 47.
[234] Larson K M, Lay T, Yamazaki Y, et al. Dynamic Sea Level Variation from GNSS: 2020 Shumagin Earthquake Tsunami Resonance and Hurricane Laura[J]. Geophysical Research Letters, 2021, 48(4): e2020GL091378.
[235] Wang X L, He X F, Shi J, et al. Estimating Sea Level, Wind Direction, Significant Wave Height, and Wave Peak Period Using a Geodetic GNSS Receiver[J]. Remote Sensing of Environment, 2022, 279: 113135.
[236] Rogers G, Dragert H. Episodic Tremor and Slip on the Cascadia Subduction Zone: The Chatter of Silent Slip[J]. Science, 2003, 300(5627): 1942-1943.
[237] 单新建, 尹昊, 刘晓东, 等. 高频GNSS实时地震学与地震预警研究现状[J]. 地球物理学报, 2019, 62(8): 3043-3052. Shan Xinjian, Yin Hao, Liu Xiaodong, et al. High-Rate Real-Time GNSS Seismology and Early Warning of Earthquakes[J]. Chinese Journal of Geophysics, 2019, 62(8): 3043-3052.
[238] Fu Y N, Freymueller J T. Seasonal and Long-Term Vertical Deformation in the Nepal Himalaya Constrained by GPS and GRACE Measurements[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B3): B03407.
[239] Hao M, Wang Q L, Shen Z K, et al. Present Day Crustal Vertical Movement Inferred from Precise Leveling Data in Eastern Margin of Tibetan Plateau[J]. Tectonophysics, 2014, 632: 281-292.
[240] Riddell A R, King M A, Watson C S. Present-Day Vertical Land Motion of Australia from GPS Observations and Geophysical Models[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(2): e2019JB018034.