A Ridesharing Model Based on Space-Time Prism for Shared Mobility
-
摘要:
拼车是城市共享出行的重要组成部分,量化分析行程间的可拼性程度对推广拼车服务和提高乘客的出行效率具有重要意义。现有研究大多依据车辆在多个上、下车点间是否满足特定时空约束条件下的先后到达顺序来判断可否拼车,缺少有效建模行程可拼性强度的手段,在应对大规模拼车请求时无法快速全面地发现所有潜在可拼机会。提出了一种基于时空棱柱的乘车行程可拼性判断模型,首先基于时间地理学中的时空棱柱建模方法和乘客共乘意愿的时空表达,构建行程的潜在时空可达范围表达模型;然后,基于行程时空棱柱间的拓扑关系判断行程的可拼性,量化行程的可拼性强度;最后,提出两种拼车匹配策略,模拟真实出行环境下的拼车匹配结果。实验结果表明,所提模型能够准确和有效地发现潜在可拼行程。对美国纽约市曼哈顿岛内行程可拼性能力的可视化分析结果呈现出明显的时空分布规律,能为车辆资源调度和乘客拼车出行规划提供一定的决策支持。
Abstract:ObjectivesRidesharing is an essential part of shared mobility for improving passengers' travel efficiency in cities. The existing studies usually determine shareable trips based on whether the arrival sequence of vehicles in more than one pick-up and drop-off points can meet the predefined spatiotemporal constraints. Such a simple approach cannot quickly and comprehensively find all the potential shareable trips under scenarios involving large-scale car-sharing requests.
MethodsBased on the modeling method of space-time prism and the spatial-temporal expression of passengers' sharing willing, we first propose a potential spatiotemporal path area model of travel. Then, we apply the topological relation between the space-time prisms of trips for ridesharing identification, and quantify the strength of ridesharing of trips. Finally, two ridesharing matching strategies are proposed to simulate the ridesharing matching process in real-world transport environment.
ResultsThe proposed ridesharing identification model can accurately delineate the potential space-time accessibility of vehicular travel, which makes it easier to discover all potential shareable trips and to realize the accurate and effective ridesharing identification.
ConclusionsThis study can be helpful for vehicle dispatching and passengers' travel planning in shared urban mobility system.
-
Keywords:
- shared mobility /
- space-time prism /
- road network /
- ridesharing model /
- matching strategy
-
http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20210633
-
-
[1] Vuchic V R. Urban Transit: Operations, Planning and Economics[M]. Hoboken, NJ: John Wiley & Sons, 2005.
[2] 季航宇, 蔡忠亮, 姜莉莉, 等. 出租车出行的空间不平等及其与人口结构的关联[J]. 武汉大学学报(信息科学版), 2021, 46(5): 766-776. Ji Hangyu, Cai Zhongliang, Jiang Lili, et al. Analysis of Spatial Inequality in Taxi Ride and Its Relationship with Population Structure[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 766-776.
[3] Mitchell W J, Borroni-Bird C, Burns L D. Reinventing the Automobile: Personal Urban Mobility for the 21st Century[M]. Cambridge: MIT Press, 2010.
[4] Botsman R, Rogers R. What’s Mine Is Yours: The Rise of Collaborative Consumption[M]. New York: Harper Business, 2010.
[5] d’Orey P M, Fernandes R, Ferreira M. Reducing the Environmental Impact of Taxi Operation: The Taxi-Sharing Use Case[C]//The 12th International Conference on ITS Telecommunications, Taipei, Taiwan, China,2012.
[6] Ardekani S, Jamei B, Herman R. A Taxicab Fare Policy Formula Based on Fuel Consumption Observations[J]. Transportation Research Record, 1986, 1103: 33-39.
[7] Clewlow R R. Carsharing and Sustainable Travel Behavior: Results from the San Francisco Bay Area[J]. Transport Policy, 2016, 51: 158-164.
[8] 陈栋胜, 李清泉, 涂伟, 等. 利用多源空间数据的城中村空间层次化识别方法[J]. 武汉大学学报(信息科学版), 2023, 48(5): 784-792. Chen Dongsheng, Li Qingquan, Tu Wei, et al. Hierarchical Spatial Recognition Method for Urban Villages by Integrating Multi-source Geospatial Data[J]. Geomatics and Information Science of Wuhan University, 2023, 48(5): 784-792.
[9] 徐毅, 童咏昕, 李未. 大规模拼车算法研究进展[J]. 计算机研究与发展, 2020, 57(1): 32-52. Xu Yi, Tong Yongxin, Li Wei. Recent Progress in Large-Scale Ridesharing Algorithms[J]. Journal of Computer Research and Development, 2020, 57(1): 32-52.
[10] Ho S C, Szeto W Y, Kuo Y H, et al. A Survey of Dial-a-Ride Problems: Literature Review and Recent Developments[J]. Transportation Research Part B: Methodological, 2018, 111: 395-421.
[11] Vazifeh M M, Santi P, Resta G, et al. Addressing the Minimum Fleet Problem in On-Demand Urban Mobility[J]. Nature, 2018, 557: 534-538.
[12] Wang X, Agatz N, Erera A. Stable Matching for Dynamic Ride-Sharing Systems[J]. Transportation Science, 2018, 52(4): 850-867.
[13] Ma S, Zheng Y, Wolfson O. T-share: A Large-scale Dynamic Taxi Ridesharing Service[C]//IEEE 29th International Conference on Data Engineering (ICDE), Brisbane, Australia, 2013.
[14] Hosni H, Naoum-Sawaya J, Artail H. The Shared-Taxi Problem: Formulation and Solution Methods[J]. Transportation Research Part B: Methodological, 2014, 70: 303-318.
[15] Li Y F, Chen R, Chen L, et al. Towards Social-Aware Ridesharing Group Query Services[J]. IEEE Transactions on Services Computing, 2017, 10(4): 646-659.
[16] Chen X, Kwan M P. Choice Set Formation with Multiple Flexible Activities Under Space-Time Constraints[J]. International Journal of Geographical Information Science, 2012, 26(5): 941-961.
[17] Timmermans H, Arentze T, Joh C H. Analysing Space-Time Behaviour: New Approaches to Old Problems[J]. Progress in Human Geography, 2002, 26(2): 175-190.
[18] Wang Y L, Kutadinata R, Winter S. Activity-based Ridesharing: Increasing Flexibility by Time Geography[C]//The 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Burlingame, California, 2016.
[19] Santi P, Resta G, Szell M, et al. Quantifying the Benefits of Vehicle Pooling with Shareability Networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(37): 13290-13294.
[20] Hansen W G. How Accessibility Shapes Land Use[J]. Journal of the American Institute of Planners, 1959, 25(2): 73-76.
[21] Miller H J. Modelling Accessibility Using Space-Time Prism Concepts Within Geographical Information Systems[J]. International Journal of Geographical Information Systems, 1991, 5(3): 287-301.
[22] Hägerstrand T. Reflections on “What About People in Regional Science?”[J]. Papers of the Regional Science Association, 1989, 66(1): 1-6.
[23] Yu H B, Shaw S L. Exploring Potential Human Activities in Physical and Virtual Spaces: A Spatio-Temporal GIS Approach[J]. International Journal of Geographical Information Science, 2008, 22(4): 409-430.
[24] 方志祥, 李清泉, 萧世伦. 利用时间地理进行位置相关的时空可达性表达[J]. 武汉大学学报(信息科学版), 2010, 35(9): 1091-1095. Fang Zhixiang, Li Qingquan, Xiao Shilun. Representation of Location-Specific Space-Time Accessibility Based on Time Geography Framework[J]. Geomatics and Information Science of Wuhan University, 2010, 35(9): 1091-1095.
[25] 王亚飞, 袁辉, 陈碧宇, 等. 行程时间不确定环境下地点可达性研究[J]. 武汉大学学报(信息科学版), 2019, 44(11): 1723-1729. Wang Yafei, Yuan Hui, Chen Biyu, et al. Measuring Place-based Accessibility Under Travel Time Uncertainty[J]. Geomatics and Information Science of Wuhan University, 2019, 44(11): 1723-1729.
[26] Kuijpers B, Miller H J, Neutens T, et al. Anchor Uncertainty and Space-Time Prisms on Road Networks[J]. International Journal of Geographical Information Science, 2010, 24(8): 1223-1248.
[27] Neutens T, van de Weghe N, Witlox F, et al. A Three-Dimensional Network-Based Space-Time Prism[J]. Journal of Geographical Systems, 2008, 10(1): 89-107.
[28] Kuijpers B, Othman W. Modeling Uncertainty of Moving Objects on Road Networks via Space-Time Prisms[J]. International Journal of Geographical Information Science, 2009, 23(9): 1095-1117.
-
期刊类型引用(10)
1. 夏涛,马娜,张学利. 生态环境损害鉴定评估系统构建与应用. 国土资源信息化. 2021(01): 55-59+11 . 百度学术
2. 徐德馨,肖建华,李黎,刘顺昌. 地质档案信息共享服务平台研究与应用. 城市勘测. 2020(02): 182-186 . 百度学术
3. 张诗檬,王文文,付博,韩征,刘钊. 基于云服务的e地质应用系统研究. 城市地质. 2020(02): 217-223 . 百度学术
4. 冯斌,梁萌,吴文鹂,张学利,杜炳锐,马娜. “地质云”模式下大地电磁数据共享研究. 物探与化探. 2020(04): 796-802 . 百度学术
5. 张学利,马娜,朱瑜馨,赵永明,汪健平,刘国. 基于云平台的农业综合信息应用系统的设计与开发. 地理空间信息. 2019(02): 27-30+9 . 百度学术
6. 张学利,马娜,杨燕,宋敦江,汪健平,刘国,赵永明. 基于消息调度机制的地质服务体系构建及应用实践. 国土资源遥感. 2019(01): 271-276 . 百度学术
7. 魏振华,汪健平,张学利,马娜,王志辉. 基于消息调度的远洋渔业数据采集体系. 科研信息化技术与应用. 2019(04): 50-55 . 百度学术
8. 张学利,马娜,吴彬,宋震,宋敦江,王志辉,刘晓. 基于云平台的地勘基金成果管理系统. 地理信息世界. 2018(04): 95-99 . 百度学术
9. 蒋捷,吴华意,黄蔚. 国家地理信息公共服务平台“天地图”的关键技术与工程实践. 测绘学报. 2017(10): 1665-1671 . 百度学术
10. 张学利,宋震,刘晓,朱月霞. 地勘基金成果管理系统的设计与开发. 国土资源信息化. 2017(03): 41-45 . 百度学术
其他类型引用(7)