[1]
|
Moritz H. Advanced Physical Geodesy[M]. Karlsruhe:Herbert Wichmann Verlag, 1980 |
[2]
|
Sebera J, Šprlák M, Novák P, et al. Iterative Spherical Downward Continuation Applied to Magnetic and Gravitational Data from Satellite[J]. Surveys in Geophysics, 2014, 35(4):941-958 |
[3]
|
Pitoňák M, Novák P, Eshagh M, et al. Downward Continuation of Gravitational Field Quantities to an Irregular Surface by Spectral Weighting[J]. Journal of Geodesy, 2020, 94(7):1-26 |
[4]
|
Leão J W D, Silva J B C. Discrete Linear Transformations of Potential Field Data[J]. GEOPHYSICS, 1989, 54(4):497-507 |
[5]
|
Pawlowski R S. Preferential Continuation for Potential-Field Anomaly Enhancement[J]. GEOPHYSICS, 1995, 60(2):390-398 |
[6]
|
Fedi M, Florio G. A Stable Downward Continuation by Using the ISVD Method[J]. Geophysical Journal International, 2002, 151(1):146-156 |
[7]
|
Trompat H, Boschetti F, Hornby P. Improved Downward Continuation of Potential Field Data[J]. Exploration Geophysics, 2003, 34(4):249-256 |
[8]
|
Heiskanen W A, Moritz H. Physical Geodesy[M]. San Francisco:Freeman and Company, 1967 |
[9]
|
Martinec Z. Stability Investigations of a Discrete Downward Continuation Problem for Geoid Determination in the Canadian Rocky Mountains[J]. Journal of Geodesy, 1996, 70(11):805-828 |
[10]
|
Novák P, Heck B. Downward Continuation and Geoid Determination Based on Band-Limited Airborne Gravity Data[J]. Journal of Geodesy, 2002, 76(5):269-278 |
[11]
|
SansòF, Sideris M. Geoid Determination:Theory and Methods[M]. Berlin:Springer, 2013 |
[12]
|
Xu P L. Truncated SVD Methods for Discrete Linear Ill-Posed Problems[J]. Geophysical Journal International, 1998, 135(2):505-514 |
[13]
|
Hansen P C, O'Leary D P. The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems[J]. SIAM Journal on Scientific Computing, 1993, 14(6):1487-1503 |
[14]
|
Kern M. An Analysis of the Combination and Downward Continuation of Satellite, Airborne and Terrestrial Gravity Data[D]. Calgary:University of Calgary, 2003 |
[15]
|
Alberts B, Klees R. A Comparison of Methods for the Inversion of Airborne Gravity Data[J]. Journal of Geodesy, 2004, 78(1/2):55-65 |
[16]
|
Hwang C, Hsiao Y S, Shih H C, et al. Geodetic and Geophysical Results from a Taiwan Airborne Gravity Survey:Data Reduction and Accuracy Assessment[J]. Journal of Geophysical Research:Solid Earth, 2007, 112(B4):93-101 |
[17]
|
Bjerhammar A. A New Theory of Geodetic Gravity[M]. Stockholm:Tekniska Hogskolan, 1964 |
[18]
|
Dampney C N G. The Equivalent Source Technique[J]. GEOPHYSICS, 1969, 34(1):39-53 |
[19]
|
Sünkel H. The Generation of a Mass Point Model from Surface Gravity Data[R]. Ohio:Ohio State University, 1983 |
[20]
|
Boschetti F, Therond V, Hornby P. Feature Removal and Isolation in Potential Field Data[J]. Geophysical Journal International, 2004, 159(3):833-841 |
[21]
|
Novák P, Kern M, Schwarz K. Numerical Studies on the Harmonic Downward Continuation of Band-Limited Airborne Gravity[J]. Studia Geophysica et Geodaetica, 2001, 45:327-345 |
[22]
|
Novák P, Kern M, Schwarz K P, et al. On Geoid Determination from Airborne Gravity[J]. Journal of Geodesy, 2003, 76(9/10):510-522 |
[23]
|
Kern M, Schwarz K K P P, Sneeuw N. A Study on the Combination of Satellite, Airborne, and Terrestrial Gravity Data[J]. Journal of Geodesy, 2003, 77(3/4):217-225 |
[24]
|
Mansi A H, Capponi M, Sampietro D. Downward Continuation of Airborne Gravity Data by Means of the Change of Boundary Approach[J]. Pure and Applied Geophysics, 2018, 175(3):977-988 |
[25]
|
Ma G Q, Liu C, Huang D N, et al. A Stable Iterative Downward Continuation of Potential Field Data[J]. Journal of Applied Geophysics, 2013, 98:205-211 |
[26]
|
Zhang C, Lü Q, Yan J Y, et al. Numerical Solutions of the Mean-Value Theorem:New Methods for Downward Continuation of Potential Fields[J]. Geophysical Research Letters, 2018, 45(8):3461-3470 |
[27]
|
Tran K V, Nguyen T N. A Novel Method for Computing the Vertical Gradients of the Potential Field:Application to Downward Continuation[J]. Geophysical Journal International, 2019, 220(2):1316-1329 |
[28]
|
Wei Ziqing. High-Order Radial Derivatives of Harmonic Function and Gravity Anomaly[J]. Journal of Physical Science and Application, 2014, 4(7):454-467 |
[29]
|
Wong L, Gore R. Accuracy of Geoid Heights from Modified Stokes Kernels[J]. Geophysical Journal International, 1969, 18(1):81-91 |
[30]
|
Vaníček P, Featherstone W E. Performance of Three Types of Stokes's Kernel in the Combined Solution for the Geoid[J]. Journal of Geodesy, 1998, 72(12):684-697 |
[31]
|
Wang Y M, Saleh J, Li X, et al. The US Gravimetric Geoid of 2009(USGG2009):Model Development and Evaluation[J]. Journal of Geodesy, 2012, 86(3):165-180 |
[32]
|
Pavlis N K, Holmes S A, Kenyon S C, et al. The Development and Evaluation of the Earth Gravitational Model 2008(EGM2008)[J]. Journal of Geophysical Research:Solid Earth, 2012, 117(B4) |