Secondary Detection of MRU Position Deviation and Terrain Elimination of Multi-beam Abnormal Stripe
-
摘要:
针对多波束测深数据中常出现的沿航迹向异常条纹在浅水影响显著,传统方法机理不完善和异常消除不彻底问题,基于多波束数据处理原理分析成因,认为主要由于诱导涌浪未补偿或姿态传感器(motion reference unit,MRU)位置偏差量测不准带来的诱导涌浪补偿残余所致,为此提出基于往返测线测深点对深度不符值的MRU位置偏差二次分段探测方法和异常条纹消除方法。首先通过最近平面点搜索,发现同名点对;然后分段构建深度不符值与欲探测的MRU位置偏差关系模型,并借助支持向量机回归参数抗差估计法估计位置偏差;最后给出修正模型,消除测深数据中异常条纹影响。实验表明,所提方法从机理上较彻底地消除了异常测深条纹影响,也为MRU安装偏差探测提供了一种新方法。
Abstract:ObjectivesThe anomaly along-track stripes which often appear in the multi-beam sounding data have significant influence on shallow water. Aiming at the problem that the mechanism of traditional methods is not perfect and the elimination of anomalies is not complete, the causes are analyzed based on the multi-beam data processing principle. It is considered that the main reason is induced heave compensation residual caused by uncompensated induced heave or inaccurate measurement of position deviation of motion reference unit(MRU).
MethodsFor this reason, a method of position deviation detection and elimination of abnormal stripes based on the sounding data of common coverage area is proposed. First, homologous point pairs are found by automatic nearest plane point searching. Second, the relationship model between the water depth difference of the homologous point and the position deviation to be detected was constructed, and the position deviation was estimated by support vector machine regression parameter robust estimation method. Finally, a modified model is given to eliminate the influence of abnormal stripes in the sounding data.
ResultsExperimental results show that: (1) After the calibration of the proposed method, the standard deviation of the difference between the common coverage area of the round-trip lines decreases from 8.5 cm to 2.6 cm. (2) The mutual difference between the detection results of each section is about 1 cm. (3) The proposed method performs (significantly different) on adjacent lines with 50% and 15% overlap area, with standard deviations decreasing from 6.9 cm to 3.9 cm and from 12.9 cm to 7.6 cm, respectively. (4) Using the detected relative position deviation to correct the entire measurement area, the standard deviation of the discrepancy value in the common coverage area is reduced from 0.07 m to 0.03 m.
ConclusionsThe proposed method can completely eliminate the influence of abnormal sounding stripes and provide a new method for detecting MRU installation deviation. However, the results are affected by the overlap area of the adjacent lines, so it is recommended to be performed on the round-trip lines whenever possible.
-
http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20210556
-
表 1 影响测深的因素及其特点
Table 1 Influence Characteristics of Different Factors on Depth
影响因素 影响特点及变化周期 潮位误差 ping内测深数据整体抬升或降低,变化周期与潮位周期相同 安装偏角 对ping断面测深数据影响与波束入射角相关,在整个测线内一直存在 声速误差 对ping断面测深数据影响随波束入射角增大而增大,在局域一直存在 动吃水 引起ping断面测深数据整体抬升或降低,与船速变化周期相关,一段时间内保持稳定 诱导涌浪 引起ping断面测深数据的整体抬升或降低,与姿态的变化周期相关,变化周期短 表 2 两相邻测线不同公共覆盖率情况下的位置偏差探测结果
Table 2 Position Offset Detections of Two Surveying Lines with Different Common Coverage
段数 公共区域覆盖率/% 50 100 15 x/m y/m x/m y/m x/m y/m 1 -1.75 1.88 -1.84 1.78 -1.46 2.19 2 -1.73 1.89 -1.84 1.78 -1.55 2.03 3 -1.77 1.89 -1.84 1.78 -1.84 2.07 表 3 不同公共覆盖率的相邻测线改正结果
Table 3 Correction Results of Adjacent Lines with Different Common Coverages
公共区域覆盖率/% 改正前后 最大值/cm 最小值/cm 平均值/cm 标准差/cm 100 前 21.0 -25.3 6.9 8.5 后 14.1 -12.8 2.1 2.6 50 前 37.8 -48.3 6.0 6.9 后 35.4 -48.6 4.0 3.9 15 前 62.3 -56.5 17.4 12.9 后 73.4 -64.7 6.4 7.6 -
[1] 刘经南, 赵建虎, 马金叶. 通导遥一体化深远海PNT基准及服务网络构想[J]. 武汉大学学报(信息科学版), 2022, 47(10): 1523-1534. Liu Jingnan, Zhao Jianhu, Ma Jinye. Concept of Constructing the Underwater PNT Network with the Abilities of Communication, Navigation and Remote Sensing in the Deep Sea[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1523-1534.
[2] 阳凡林,刘经南,赵建虎.多波束测深数据的异常检测和滤波[J].武汉大学学报(信息科学版),2004,29(1):80-83. Yang Fanlin,Liu Jingnan,Zhao Jianhu. Detecting Outliers and Filtering Noises in Multi-beam Data[J]. Geomatics and Information Science of Wuhan University,2004,29(1):80-83.
[3] 赵建虎,刘经南,阳凡林. 多波束测深数据系统误差的削弱方法研究[J]. 武汉大学学报(信息科学版), 2004,29(5):394-397. Zhao Jianhu,Liu Jingnan,Yang Fanlin. Weaken Systematic Error in Depth of MB-ES[J]. Geomatics and Information Science of Wuhan University,2004,29(5):394-397.
[4] 张志衡, 彭认灿, 黄文骞, 等. 考虑自然邻点影响域的多波束测深数据趋势面滤波改进算法[J]. 测绘学报, 2018,47(1):35-47. Zhang Zhiheng, Peng Rencan, Huang Wenqian, et al. An Improved Algorithm of Tendency Surface Filtering in Multi-beam Bathymetric Data Considering the Natural Neighboring Points Influence Field[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47 (1): 35-47.
[5] 赵祥鸿, 暴景阳. 多波束测深异常数据探测方法[J]. 哈尔滨工程大学学报, 2018,39(9):1458-1464 Zhao Xianghong, Bao Jingyang. Method for Detecting Outliers of Multi-beam Sounding Data[J]. Journal of Harbin Engineering University, 2018, 39(9): 1458-1464
[6] Mohammadloo T H, Snellen M, Renoud W, et al. Correcting Multibeam Echosounder Bathymetric Measurements for Errors Induced by Inaccurate Water Column Sound Speeds[J]. IEEE ACCESS, 2019,7:122052-122068.
[7] 赵建虎,张红梅,吴猛.一种基于常梯度模板插值的声线跟踪算法[J].武汉大学学报(信息科学版),2021,46(1) : 71-78. Zhao Jianhu, Zhang Hongmei, Wu Meng. A Sound Ray Tracking Algorithm Based on Template⁃Interpolation of Constant⁃Gradient Sound Velocity[J]. Geomatics and Information Science of Wuhan University, 2021, 46 (1): 71-78.
[8] 柴江波. 顾及地形趋势的异常多波束测深数据处理方法研究[D]. 武汉:武汉大学, 2021. Chai Jiangbo. Research on Processing Method of Abnormal Multi-beam Bathymetry Data Taking into Account the Changing Trend of Terrain[D]. Wuhan: Wuhan University, 2021.
[9] 赵建虎,刘经南. 多波束测深系统的归位问题研究[J]. 海洋测绘, 2003,23(1):6-7. Zhao Jianhu, Liu Jingnan. Problems on the Conformity to the Real Sounding Points from the Multi-beam Sounding System[J]. Hydrographic Surveying and Charting, 2003,23(1): 6-7.
[10] 金绍华, 刘国庆, 孙文川, 等. 顾及姿态及声线弯曲的多波束测深归算模型研究[J]. 海洋测绘, 2019, 39 (1): 19-22,34. Jin Shaohua, Liu Guoqing, Sun Wenchuan, et al. The Research on Depth Reduction Model of Multi-beam Echosounding Considering Ship Attitude and Sound Ray Bending[J]. Hydrographic Surveying and Charting, 2019, 39(1): 19-22, 34.
[11] 阳凡林, 辛明真, 刘经南, 等. 超短基线多信标约束的深海动态定位方法探讨[J]. 武汉大学学报(信息科学版), 2023, 48(11): 1876-1883. Yang Fanlin, Xin Mingzhen, Liu Jingnan, et al. Discussion of Deep-sea Dynamic Positioning Methods with Ultra-short Baseline Multi-beacon Constraint[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1876-1883.
[12] 刘方兰,张志荣,余平. 多波束系统横摇、纵倾参数的校正方法[J]. 吉林大学学报(地球科学版), 2004,34(4):621-624. Liu Fanglan, Zhang Zhirong, Yu Ping. The Methods Correcting Roll and Pitch Biases of Multibeam Bathymetric System[J].Journal of Jilin University (Earth Science Edition), 2004, 34 (4) : 621-624.
[13] 董庆亮, 韩红旗, 方兆宝, 等. 声速剖面改正对多波束测深的影响[J]. 海洋测绘, 2007,27(2): 56-58. Dong Qingliang, Han Hongqi, Fang Zhaobao.The Influence of Sound Speed Profiles Correction on Multi-beam Survey [J]. Hydrographic Surveying and Charting, 2007,27 (2):56-58.
[14] Dinn D F, Loncarevic B D ,Costello G. The Effect of Sound Velocity Errors on Multi-beam Sonar Depth Accuracy[C]// OCEANS’95 MTS/IEEE, San Diego, CA, USA,1995.
[15] 赵建虎,刘经南. 多波束测深及图像数据处理[M]. 武汉:武汉大学出版社,2008. Zhao Jianhu,Liu Jingnan. Multi-beam Sounding and Image Data Processing[M]. Wuhan:Wuhan University Press,2008.
[16] 朱小辰, 肖付民, 刘雁春, 等. 表层声速对多波束测深影响的研究[J]. 海洋测绘, 2007,27(2):23-25. Zhu Xiaochen, Xiao Fumin, Liu Yanchun, et al. Research on the Influence of Surface Sound Velocity in Multi-beam Echo Sounding[J]. Hydrographic Surveying and Charting ,2007, 27(2): 23-25.
[17] 赵建虎, 刘经南, 周丰年. GPS测定船体姿态方法研究[J]. 武汉大学学报(信息科学版), 2000, 25(4): 353-357. Zhao Jianhu, Liu Jingnan, Zhou Fengnian. Method in Determining Vessel Attitude with GPS[J]. Geomatics and Information Science of Wuhan University, 2000, 25(4): 353-357.
[18] 葛健, 肖付民, 丰启明. 姿态传感器与换能器安装位置偏差对换能器升沉监测的影响[J]. 海洋测绘, 2008, 28(4) :4-7. Ge Jian, Xiao Fumin, Feng Qiming. Effect of Monitoring Heave of Transducer Due to the Spatial Offset Between Motion Sensor and Transducer[J]. Hydrographic Surveying and Charting , 2008, 28(4) :4-7.
[19] 李清泉, 朱家松, 汪驰升, 等. 海岸带区域船载水岸一体综合测量技术概述[J]. 测绘地理信息, 2017,42(5):1-6. Li Qingquan, Zhu Jiasong, Wang Chisheng, et al. Shipborne Combined Laser and Bathymetric Surveying Technique in Coastal Zone: An Overview[J]. Journal of Geomatics, 2017,42(5):1-6.
[20] Kwok T Y. Support Vector Mixture for Classification and Regression Problems[C]//The 14th International Conference on Pattern Recognition, Brisbane, Australia, 1998.
[21] 王定成, 方廷健, 唐毅, 等. 支持向量机回归理论与控制的综述[J]. 模式识别与人工智能, 2003, 16(2): 192-197. Wang Dingcheng, Fang Tingjian, Tang Yi, et al. Review of Support Vector Machines Regression Theory and Control[J]. Pattern Recognition and Artificial Intelligence, 2003, 16(2): 192-197.
[22] Vapnik V N. The Nature of Statistical Learning Theory[J]. IEEE Transactions on Neural Networks, 1997, 8(6): 1564.