[1]
|
PEI Huikun, JIANG San, LIN Gauoan, et al. 3D Reconstruction of Transmission Route based on UAV Oblique Photogrammetry[J]. Science of Surveying and Mappin, 2016, 41(12):292-296(裴慧坤,姜三,林国安,等.依托无人机倾斜摄影的电力走廊三维重建[J].测绘科学, 2016, 41(12):292-296) |
[2]
|
JIANG S, JIANG W, HUANG W, et al. UAV-based oblique photogrammetry for outdoor data acquisition and offsite visual inspection of transmission line[J]. Remote Sensing, 2017, 9(3):278. |
[3]
|
LI Deren, LI Ming. Research Advance and Application Prospect of UnmannedAerial Vehicle Remote Sensing System[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5):505-513(李德仁,李明.无人机遥感系统的研究进展与应用前景[J].武汉大学学报·信息科学版, 2014, 39(5):505) |
[4]
|
WU C. Critical Configurations for Radial Distortion Self-Calibration[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014:25-32. |
[5]
|
ZHOU Y, RUPNIK E, MEYNARD C, et al. Simulation and Analysis of Photogrammetric UAV Image Blocks-Influence of Camera Calibration Error[J]. Remote Sensing, 2019, 12(1):22. |
[6]
|
TOURNADRE V, PIERROT-DESEILLIGNY M, FAURE P H. UAV Linear Photogrammetry[C]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015:327. |
[7]
|
POLIC M, STEIDL S, ALBL C, et al. Uncertainty based camera model selection[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020:5991-6000. |
[8]
|
GRIFFITHS D, BURNINGHAM H. Comparison of pre-and self-calibrated camera calibration models for UAS-derived nadir imagery for a SfM application[J]. Progress in physical geography:earth and environment, 2018, 43(2):215-235. |
[9]
|
JAUD M, PASSOT S, LE BIVIC R, et al. Assessing the accuracy of high resolution digital surface models computed by PhotoScan® and MicMac® in sub-optimal survey conditions[J]. Remote Sensing, 2016, 8(6):465. |
[10]
|
SALACH A, BAKUŁA K, PILARSKA M, et al. Accuracy assessment of point clouds from LiDAR and dense image matching acquired using the UAV platform for DTM creation[J]. ISPRS International Journal of Geo-Information, 2018, 7(9):342. |
[11]
|
JAUD M, PASSOT S, ALLEMAND P, et al. Suggestions to limit geometric distortions in the reconstruction of linear coastal landforms by SfM photogrammetry with PhotoScan® and MicMac® for UAV surveys with restricted GCPs pattern[J]. Drones, 2019, 3(1):2. |
[12]
|
NAHON A, MOLINA P, BLáZQUEZ M, et al. Corridor mapping of sandy coastal foredunes with UAS photogrammetry and mobile laser scanning[J]. Remote Sensing, 2019, 11(11):1352. |
[13]
|
DUANE C B. Close-Range Camera Calibration[J]. Photogramm. Eng., 1971, 37(8):855-866. |
[14]
|
FRASER C S. Digital camera self-calibration[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1997, 52(4):149-159. |
[15]
|
LUHMANN T, ROBSON S, KYLE S, et al. Close Range Photogrammetry:Principles, Techniques and Applications[M]. Dunbeath, Caithness, Scotland:Whittles publishing, 2006. |
[16]
|
FITZGIBBON, A. W. Simultaneous linear estimation of multiple view geometry and lens distortion[C]. IEEE Computer Society Conference on Computer Vision & Pattern Recognition, 2001. |
[17]
|
KUKELOVA Z, PAJDLA T. A minimal solution to the autocalibration of radial distortion[C]. IEEE Conference on Computer Vision & Pattern Recognition, 2007. |
[18]
|
KUKELOVA Z, PAJDLA T. A Minimal Solution to Radial Distortion Autocalibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12):p.2410-2422. |
[19]
|
JIANG F, KUANG Y, SOLEM J E, et al. A Minimal Solution to Relative Pose with Unknown Focal Length and Radial Distortion[C]. Springer International Publishing, 2014. |
[20]
|
KUKELOVA Z, HELLER J, BUJNAK M, et al. Efficient Solution to the Epipolar Geometry for Radially Distorted Cameras[C]. IEEE International Conference on Computer Vision, 2015:2309-2317. |
[21]
|
EBNER H. Self calibrating block adjustment[J]. Bildmessung und Luftbildwessen, 1976, 44:128-139. |
[22]
|
GRUEN A. Accuracy, reliability and statistics in close-range photogrammetry[C]. Inter-Congress Symposium of ISP Commission V, 1978. |
[23]
|
TANG R, FRITSCH D, CRAMER M, et al. A Flexible Mathematical Method for Camera Calibration in Digital Aerial Photogrammetry[J]. Photogrammetric Engineering & Remote Sensing, 2012, 78:1069-1077. |
[24]
|
TANG R, FRITSCH D, CRAMER M. New rigorous and flexible Fourier self-calibration models for airborne camera calibration[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 71:76-85. |
[25]
|
BABAPOUR H, MOKHTARZADE M, VALADAN ZOEJ M J. Self-calibration of digital aerial camera using combined orthogonal models[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117:29-39. |
[26]
|
MAXIME L. Incremental Fusion of Structure-from-Motion and GPS Using Constrained Bundle Adjustments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(12):2489-2495. |
[27]
|
GOPAUL N S, WANG J, HU B. Camera auto-calibration in GPS/INS/stereo camera integrated kinematic positioning and navigation system[J]. Journal of Global Positioning Systems, 2016, 14(1):3. |
[28]
|
YUAN Xiuxiao, ZHU Wu, WU Junli, WANG Ruiyao. GPS-supported Bundle Block Adjustment Without Ground Control Points[J]. Geomatics and Information Science of Wuhan University, 2004, 29(10):852-857(袁修孝,朱武,武军郦,等.无地面控制GPS辅助光束法区域网平差[J].武汉大学学报·信息科学版, 2004, 29(10):852) |
[29]
|
SCHONBERGER J L, FRAHM J M. Structure-from-Motion Revisited[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2016:4104-4113. |