留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2001-2019年长江中下游农业干旱遥感监测及植被敏感性分析

尹国应 张洪艳 张良培

尹国应, 张洪艳, 张良培. 2001-2019年长江中下游农业干旱遥感监测及植被敏感性分析[J]. 武汉大学学报 ● 信息科学版. doi: 10.13203/j.whugis20210172
引用本文: 尹国应, 张洪艳, 张良培. 2001-2019年长江中下游农业干旱遥感监测及植被敏感性分析[J]. 武汉大学学报 ● 信息科学版. doi: 10.13203/j.whugis20210172
YIN Guoying, ZHANG Hongyan, ZHANG Liangpei. Remote Sensing Monitoring of Agricultural Drought and Vegetation Sensitivity Analysis in the Middle and Lower Reaches of Yangtze River from 2001 to 2019[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20210172
Citation: YIN Guoying, ZHANG Hongyan, ZHANG Liangpei. Remote Sensing Monitoring of Agricultural Drought and Vegetation Sensitivity Analysis in the Middle and Lower Reaches of Yangtze River from 2001 to 2019[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20210172

2001-2019年长江中下游农业干旱遥感监测及植被敏感性分析

doi: 10.13203/j.whugis20210172
基金项目: 

国家自然科学基金(61871298,42071322);湖北省自然科学基金(2020CFA053)。

详细信息
    作者简介:

    尹国应,博士生,研究方向为农业遥感。yin_gy@whu.edu.cn

  • 中图分类号: TP79

Remote Sensing Monitoring of Agricultural Drought and Vegetation Sensitivity Analysis in the Middle and Lower Reaches of Yangtze River from 2001 to 2019

Funds: 

The National Natural Science Foundation of China (61871298, 42071322)

  • 摘要: 长江中下游地区是我国最重要的粮食产区之一,近年来,由于极端天气影响,长江中下游地区的农业生产时常受到干旱灾害威胁。利用植被条件指数(Vegetation Condition Index,VCI)、温度条件指数(Temperature Condition Index,TCI)及植被健康指数(Vegetation Health Index,VHI)对2001-2019年长江中下游地区农业干旱的时空演变情况进行监测,探究长江中下游地区VCI及TCI在VHI指数中的最优权重比例,挖掘不同植被对干旱的敏感性差异,同时基于气候变化背景分析长江中下游六省一市(湖北、湖南、安徽、江西、江苏、浙江、上海)的干旱趋势。结果表明,VCI和TCI指数能够分别反映地区植被生长异常和热量异常;当VCI和TCI的权重分配比为7:3时,VHI指数能够结合2种指数各自特点,在长江中下游地区农业干旱监测上更有优势;不同植被对干旱的敏感性不同,在长江中下游地区,农作物对干旱的敏感性最高,森林最低,草地介于二者之间;在气候变化背景下,近20年来,长江中下游地区水分条件逐渐向好,干旱风险逐步降低,其中湖北、湖南、安徽、江西和浙江等地湿润趋势明显,而江苏和上海地区湿润趋势较弱,在极端气候下仍存在一定的干旱风险。相关结果能够为长江中下游地区各省市旱情预警及抗旱措施制定、区域农业生产管理提供参考。
  • [1] Zhang L F, Jiao W Z, Zhang H M, Huang C P and Tong Q X. Studying Drought Phenomena in the Continental United States in 2011 and 2012 using Various Drought Indices[J]. Remote Sensing of Environment, 2017, 190:96-106
    [2] Cong D M, Zhao S H, Chen C and Duan Z. Characterization of Droughts during 2001-2014 based on Remote Sensing:A Case Study of Northeast China[J]. Ecological Informatics, 2017, 39:56-67
    [3] Ford T W and Labosier C F. Meteorological Conditions Associated with the Onset of Flash Drought in the Eastern United States[J]. Agricultural & Forest Meteorology, 2017, 247:414-423
    [4] Vinodkumar and Dharssi I. Evaluation and Calibration of a High-resolution Soil Moisture Product for Wildfire Prediction and Management[J]. Agricultural and Forest Meteorology, 2019, 264:27-39
    [5] The Intergovernmental Panel on Climate Change (IPCC). Global Warming 1.5℃. An IPCC Special Report on the Impacts of Global Warming of 1.5℃ above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty[R], 2018. In Press.
    [6] Esfahanian E, Nejadhashemi A P, Abouali M, Adhikari U, Zhang Z, Daneshvar F and Herman M R. Development and Evaluation of a Comprehensive Drought Index[J]. Journal of Environmental Management, 2017, 185:31-43
    [7] Sadri S, Pan M, Wada Y, Vergopolan N, Sheffield J, Famiglietti J S, Kerr Y and Wood E. A Global Near-real-time Soil Moisture Index Monitor for Food Security using Integrated SMOS and SMAP[J]. Remote Sensing of Environment, 2020, 246, 111864
    [8] Du J, Kimball J S, Velicogna I, Zhao M, Jones L A, Watts J D, Kim Y and A G. Multicomponent Satellite Assessment of Drought Severity in the Contiguous United States From 2002 to 2017 Using AMSR-E and AMSR2[J]. Water Resources Research, 2019, 55(7):5394-5412
    [9] Zhang Z, Wang D G, Wang G L, Qiu J X and Liao W L. Use of SMAP Soil Moisture and Fitting Methods in Improving GPM Estimation in Near Real Time[J]. Remote Sensing, 2019, 11(3):368
    [10] Tucker C J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation[J]. Remote Sensing of Environment, 1979, 8(2):127-150
    [11] Kogan F N. Application of Vegetation Index and Brightness Temperature for Drought Detection[J]. Advances in Space Research, 1995, 15(11):91-100
    [12] Bokusheva R, Kogan F N, Vitkovskaya I, Conradt S and Batyrbayeva M. Satellite-based Vegetation Health Indices as a Criteria for Insuring against Drought-related Yield Losses[J]. Agricultural and Forest Meteorology, 2016, 220:200-206
    [13] Pei F S, Wu C J, Liu X P, Li X, Yang K Q, Zhou Y, Wang K, Xu L and Xia G R. Monitoring the Vegetation Activity in China using Vegetation Health Indices[J]. Agricultural and Forest Meteorology, 2018, 248:215-227
    [14] Jiao W Z, Wang L X, Novick K A and Chang Q. A New Station-enabled Multi-sensor Integrated Index for Drought Monitoring[J]. Journal of Hydrology, 2019, 574:169-180
    [15] Li R H, Chen N C, Zhang X, Zeng L L, Wang X P, Tang S H, Li D R and Niyogi D. Quantitative Analysis of Agricultural Drought Propagation Process in the Yangtze River Basin by using Cross Wavelet Analysis and Spatial Autocorrelation[J]. Agricultural and Forest Meteorology, 2020, 280:107809
    [16] Berry J A, Beerling D J and Franks P J. Stomata:Key Players in the Earth System, Past and Present[J]. Current Opinion in Plant Biology, 2010, 13(3):232-239
    [17] Bayarjargal Y, Karnieli A, Bayasgalan M, Khudulmur S, Gandush C and Tucker C J. A Comparative Study of NOAA-AVHRR Derived Drought Indices using Change Vector Analysis[J]. Remote Sensing of Environment, 2006, 105(1):9-22
    [18] Karnieli A, Agam N, Pinker R T, Anderson M, Imhoff M L, Gutman G G, Panov N and Goldberg A. Use of NDVI and Land Surface Temperature for Drought Assessment:Merits and Limitations[J]. Journal of Climate, 2010, 23(3):618-633
    [19] Zhang A X and Jia G S. Monitoring Meteorological Drought in Semiarid Regions using Multi-sensor Microwave Remote Sensing Data[J]. Remote Sensing of Environment, 2013, 134:12-23
    [20] Rhee J, Im J and Carbone G J. Monitoring Agricultural Drought for Arid and Humid Regions using Multi-sensor Remote Sensing Data[J]. Remote Sensing of Environment, 2010, 114(12):2875-2887
    [21] Dai A. Increasing Drought under Global Warming in Observations and Models[J]. Nature Climate Change, 2013, 3(1):52-58
    [22] Wang A and Kong X. Regional Climate Model Simulation of Soil Moisture and Its Application in Drought Reconstruction across China from 1911 to 2010[J]. International Journal of Climatology, 2020, 1-17
    [23] Liang L, Zhao S-h, Qin Z-h, He K-x, Chen C, Luo Y-x and Zhou X-d. Drought Change Trend Using MODIS TVDI and Its Relationship with Climate Factors in China from 2001 to 2010[J]. Journal of Integrative Agriculture, 2014, 13(7):1501-1508
    [24] Zeng Z, Wu W, Li Y, Zhou Y, Zhang Z, Zhang S, Guo Y, Huang H and Li Z. Spatiotemporal Variations in Drought and Wetness from 1965 to 2017 in China[J]. Water, 2020, 12(8)
  • [1] 吴洁, 程亮, 楚森森, 阮晓光.  城市出行天空可视指数 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20200447
    [2] 李营, 陈云浩, 陈辉, 王晨.  GF-1 WFV影像的翅碱蓬植被指数构建 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20180105
    [3] 孟令奎, 朱会玲, 谢文君, 胡艺杰, 张文.  分布式MODIS植被供水指数生产模型研究与实现 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20150699
    [4] 王鹏新, 冯明悦, 梅树立, 李俐, 张树誉, 景毅刚.  条件植被温度指数的多尺度特性分析与应用 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20160105
    [5] 王蕾, 王鹏新, 李俐, 张树誉, 白雪娇, 解毅.  应用条件植被温度指数预测县域尺度小麦单产 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20160391
    [6] 吴立新, 许志华, 范松滔, 王秋玲.  植被稀疏地区沟蚀变化的地面激光扫描监测与沟蚀量估算 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20160013
    [7] 袁乐先, 李斐, 张胜凯, 朱婷婷, 左耀文.  利用ICESat/GLAS数据研究北极海冰干舷高度 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20150690
    [8] 甘文霞, 沈焕锋, 张良培, 龚威.  采用6S模型的多时相MODIS植被指数NDVI归一化方法 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20120731
    [9] 王伦澈, 龚威, 张淼, 马盈盈.  武汉地区植被NPP动态监测研究 . 武汉大学学报 ● 信息科学版,
    [10] 孔令桥, 秦昆, 龙腾飞.  利用二型模糊聚类进行全球海表温度数据挖掘 . 武汉大学学报 ● 信息科学版,
    [11] 韩萍, 王鹏新, 张树誉, 朱德海.  基于条件植被温度指数的干旱预测研究 . 武汉大学学报 ● 信息科学版,
    [12] 孙建国, 艾廷华, 王沛, 赵传燕.  基于NDVI-气候变量特征空间的植被退化评价 . 武汉大学学报 ● 信息科学版,
    [13] 王晓红, 刘耀林, 杜晓.  基于MODIS图像的植被叶面水反演与农业干旱监测 . 武汉大学学报 ● 信息科学版,
    [14] 李建成, 褚永海, 姜卫平, 徐新禹.  利用卫星测高资料监测长江中下游湖泊水位变化 . 武汉大学学报 ● 信息科学版,
    [15] 王正兴, 刘闯, 陈文波, 林昕.  MODIS增强型植被指数EVI与NDVI初步比较 . 武汉大学学报 ● 信息科学版,
    [16] 牛宝茹, 刘俊蓉, 王政伟.  干旱半干旱地区植被覆盖度遥感信息提取研究 . 武汉大学学报 ● 信息科学版,
    [17] 张立福, 张良培, 村松加奈子, 藤原昇.  利用MODIS数据计算陆地植被指数VIUPD . 武汉大学学报 ● 信息科学版,
    [18] 刘良明, 梁益同, 马慧云, 黄靖.  MODIS和AVHRR植被指数关系的研究 . 武汉大学学报 ● 信息科学版,
    [19] 王鹏新, 龚健雅, 李小文.  条件植被温度指数及其在干旱监测中的应用 . 武汉大学学报 ● 信息科学版,
    [20] 李腾, 张宝钢, 程 晓, 张媛媛, 惠凤鸣, 赵天成, 秦为稼, 梁建宏, 杨元德, 刘旭颖, 李新情.  无人机在南极科学研究的应用:进展与展望 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20200098
  • 加载中
计量
  • 文章访问数:  310
  • HTML全文浏览量:  54
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-09

2001-2019年长江中下游农业干旱遥感监测及植被敏感性分析

doi: 10.13203/j.whugis20210172
    基金项目:

    国家自然科学基金(61871298,42071322);湖北省自然科学基金(2020CFA053)。

    作者简介:

    尹国应,博士生,研究方向为农业遥感。yin_gy@whu.edu.cn

  • 中图分类号: TP79

摘要: 长江中下游地区是我国最重要的粮食产区之一,近年来,由于极端天气影响,长江中下游地区的农业生产时常受到干旱灾害威胁。利用植被条件指数(Vegetation Condition Index,VCI)、温度条件指数(Temperature Condition Index,TCI)及植被健康指数(Vegetation Health Index,VHI)对2001-2019年长江中下游地区农业干旱的时空演变情况进行监测,探究长江中下游地区VCI及TCI在VHI指数中的最优权重比例,挖掘不同植被对干旱的敏感性差异,同时基于气候变化背景分析长江中下游六省一市(湖北、湖南、安徽、江西、江苏、浙江、上海)的干旱趋势。结果表明,VCI和TCI指数能够分别反映地区植被生长异常和热量异常;当VCI和TCI的权重分配比为7:3时,VHI指数能够结合2种指数各自特点,在长江中下游地区农业干旱监测上更有优势;不同植被对干旱的敏感性不同,在长江中下游地区,农作物对干旱的敏感性最高,森林最低,草地介于二者之间;在气候变化背景下,近20年来,长江中下游地区水分条件逐渐向好,干旱风险逐步降低,其中湖北、湖南、安徽、江西和浙江等地湿润趋势明显,而江苏和上海地区湿润趋势较弱,在极端气候下仍存在一定的干旱风险。相关结果能够为长江中下游地区各省市旱情预警及抗旱措施制定、区域农业生产管理提供参考。

English Abstract

尹国应, 张洪艳, 张良培. 2001-2019年长江中下游农业干旱遥感监测及植被敏感性分析[J]. 武汉大学学报 ● 信息科学版. doi: 10.13203/j.whugis20210172
引用本文: 尹国应, 张洪艳, 张良培. 2001-2019年长江中下游农业干旱遥感监测及植被敏感性分析[J]. 武汉大学学报 ● 信息科学版. doi: 10.13203/j.whugis20210172
YIN Guoying, ZHANG Hongyan, ZHANG Liangpei. Remote Sensing Monitoring of Agricultural Drought and Vegetation Sensitivity Analysis in the Middle and Lower Reaches of Yangtze River from 2001 to 2019[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20210172
Citation: YIN Guoying, ZHANG Hongyan, ZHANG Liangpei. Remote Sensing Monitoring of Agricultural Drought and Vegetation Sensitivity Analysis in the Middle and Lower Reaches of Yangtze River from 2001 to 2019[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20210172
参考文献 (24)

目录

    /

    返回文章
    返回