留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

点云压缩研究进展与趋势

张卉冉 董震 杨必胜 黄荣刚 徐大展

张卉冉, 董震, 杨必胜, 黄荣刚, 徐大展. 点云压缩研究进展与趋势[J]. 武汉大学学报 ● 信息科学版. doi: 10.13203/j.whugis20210103
引用本文: 张卉冉, 董震, 杨必胜, 黄荣刚, 徐大展. 点云压缩研究进展与趋势[J]. 武汉大学学报 ● 信息科学版. doi: 10.13203/j.whugis20210103
ZHANG Huiran, DONG Zhen, YANG Bisheng, HUANG Ronggang, XU Dazhan. Progress and Perspectives of Point Cloud Compression[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20210103
Citation: ZHANG Huiran, DONG Zhen, YANG Bisheng, HUANG Ronggang, XU Dazhan. Progress and Perspectives of Point Cloud Compression[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20210103

点云压缩研究进展与趋势

doi: 10.13203/j.whugis20210103
基金项目: 

城市空间信息工程北京市重点实验室资助项目(2020208);湖北省自然科学基金(2021CFB352)。

详细信息
    作者简介:

    张卉冉,硕士,主要从事三维激光扫描数据处理方面的研究。zhr1013@whu.edu.cn

  • 中图分类号: P237.3

Progress and Perspectives of Point Cloud Compression

Funds: 

The Fund of Beijing Key Laboratory of Urban Spatial Information Engineering (2020208)

  • 摘要: 三维点云为物理世界精细数字化提供了高精度的三维表达方式,广泛应用于三维建模、智慧城市、自主导航系统、增强现实等领域。然而,点云的数据海量、非结构化、密度不均等特点给点云的存储和传输带来了巨大挑战。因此在有限的存储空间容量和网络传输带宽中实现低比特率、低失真率的点云压缩具有着重要的理论意义和实用价值。围绕点云压缩中的研究现状、标准框架和评价指标,阐述国内外点云压缩算法研究工作、运动图像专家组(Moving Picture Experts Group,MPEG)压缩标准框架以及几何和属性信息质量评价指标的最新进展,分析比较三种开源点云压缩算法在点云压缩公开数据集下的性能表现,并对点云压缩的主要发展方向趋势予以展望。
  • [1] Thanou D, Chou P A, Frossard P. Graph-based motion estimation and compensation for dynamic 3D point cloud compression[C]//IEEE International Conference on Image Processing. IEEE, 2015.
    [2] Thanou D, Chou P, Frossard P. Graph-based compression of dynamic 3D point cloud sequences[J]. IEEE Transactions on Image Processing, 2016:1765-1778.
    [3] Bletterer A, Payan F, Antonini M, et al. Point Cloud Compression using Depth Maps[J]. Electronic Imaging, 2016, 2016(21):1-6.
    [4] Anis A, Chou P A, Ortega A. Compression of dynamic 3D point clouds using subdivisional meshes and graph wavelet transforms[C]//IEEE International Conference on Acoustics. IEEE, 2016.
    [5] Yang R, Yan N, Li L, et al. Chain Code-Based Occupancy Map Coding for Video-Based Point Cloud Compression[C]. Visual Communications and Image Processing (VCIP), Macau, 2020, 479-482.
    [6] Queiroz R L D, Chou P A. Motion-Compensated Compression of Dynamic Voxelized Point Clouds[J]. IEEE Transactions on Image Processing, 2017, PP (99):1-1.
    [7] Li L, Li Z, Liu S, et al. Efficient Projected Frame Padding for Video-based Point Cloud Compression[J]. IEEE Transactions on Multimedia, 2020, PP (99):1-1.
    [8] MPEG 3DG, Call for proposals for point cloud compression v2, ISO/IEC JTC 1/SC 29/WG 11 N16763, 2017.
    [9] MPEG, "PCC Core Experiments 0.1 on Convergence between TMC1 and TMC3" ISO/IEC JTC1/SC29/WG11 MPEG, N 17352, Jan. 2018.
    [10] Cao C, Preda M, Zaharia T. 3D Point Cloud Compression:A Survey[C]//The 24th International Conference on 3D Web Technology. 2019.
    [11] Graziosi D, Nakagami O, Kuma S, et al. An overview of ongoing point cloud compression standardization activities:video-based (V-PCC) and geometry-based (G-PCC)[J]. APSIPA Transactions on Signal and Information Processing, 2020, 9.
    [12] Huang Y, Peng J, Kuo C C J, et al. Octree-Based Progressive Geometry Coding of Point Clouds[C]. Symposium on Point Based Graphics, Boston, Massachusetts, USA, 2006. Proceedings. Eurographics Association, 2006.
    [13] Hubo E, Mertens T, Haber T, Bekaert P. The Quantized kd-Tree:Efficient Ray Tracing of Compressed Point Clouds[C]. IEEE Symposium on Interactive Ray Tracing, Salt Lake City, UT, 2006, pp. 105-113.
    [14] Botsch M, R. Pajarola (editors, Schnabel R, et al. A Parallelly Decodeable Compression Scheme for Efficient Point-Cloud Rendering[C]. Symposium on Point Based Graphics. DBLP, 2007.
    [15] Sim J Y, Lee S U. Compression of 3-D Point Visual Data Using Vector Quantization and Rate-Distortion Optimization[J]. IEEE Transactions on Multimedia, 2008, 10(3):305-315.
    [16] Schnabel R, Möser S, Klein R. Fast vector quantization for efficient rendering of compressed point-clouds[J]. Computers&Graphics, 2008, 32(2):246-259.
    [17] Park S B, Lee S U. Multiscale Representation and Compression of 3-D Point Data[J]. IEEE Transactions on Multimedia, 2009, 11(1):177-183.
    [18] Ochotta T, Saupe D. Image-Based Surface Compression[J]. Computer Graphics Forum, 2010, 27(6):1647-1663.
    [19] Daribo I, Furukawa R, Sagawa R, et al. Point cloud compression for grid-pattern-based 3D scanning system[C]. Visual Communications and Image Processing (VCIP), Tainan, 2011, 1-4.
    [20] Kammerl J, Blodow N, Rusu R B, et al. Real-time Compression of Point Cloud Streams[C]. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2012.
    [21] Smith J, Petrova G, Schaefer S. Progressive encoding and compression of surfaces generated from point cloud data[J]. Computers&Graphics, 2012, 36(5):341-348.
    [22] Jiang W, Tian J, Cai K, et al. Tangent-plane-continuity maximization based 3D point compression[C]. 19th IEEE International Conference on Image Processing, Orlando, FL, 2012, 1277-1280.
    [23] Daribo I, Furukawa R, Sagawa R, et al. Adaptive arithmetic coding for point cloud compression[C]. 3DTV-Conference:The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON). IEEE, 2012.
    [24] Elseberg J, Borrmann D, Nuechter A. One billion points in the cloud:an octree for efficient processing of 3D laser scans[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 76(FEB.):76-88.
    [25] Isenburg, Martin. LASzip:lossless compression of LiDAR data[J]. Photogrammetric Engineering&Remote Sensing, 2013, 79(2):209-217.
    [26] Fan Y, Huang Y, Peng J. Point cloud compression based on hierarchical point clustering[C]. 2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference. IEEE, 2013.
    [27] Julie, Digne, Raphalle, et al. Self-similarity for accurate compression of point sampled surfaces[J]. Computer Graphics Forum, 2014, 33(2):155-164.
    [28] Zhang C, Florêncio D, Loop C. Point cloud attribute compression with graph transform[C]. IEEE Int. Conf. Image Process. Paris, France, 2014, Oct.
    [29] Morell V, Orts S, Cazorla M, et al. Geometric 3D point cloud compression[J]. Pattern Recognition Letters, 2014, 50:55-62.
    [30] Ahn J K, Lee K Y, Sim J Y, et al. Large-Scale 3D Point Cloud Compression Using Adaptive Radial Distance Prediction in Hybrid Coordinate Domains[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(3):422-434.
    [31] Golla T, Klein R. Real-time point cloud compression[C]. IEEE/RSJ International Conference on Intelligent Robots&Systems. IEEE, 2015:5087-5092.
    [32] Houshiar H, Nuchter A. 3D point cloud compression using conventional image compression for efficient data transmission[C]. In Proceedings of the 2015 XXV International Conference on Information, Communication and Automation Technologies (ICAT)(ICAT'15). IEEE Computer Society, USA, 1-8.
    [33] Bletterer, Arnaud, Payan, et al. Point Cloud Compression using Depth Maps[J]. Electronic Imaging, 2016.
    [34] Cohen R A, Tian D, Vetro A. Point Cloud Attribute Compression Using 3-D Intra Prediction and Shape-Adaptive Transforms[C]. Data Compression Conference. IEEE Computer Society, 2016:141-150.
    [35] Dado B, Kol T R, Bauszat P, et al. Geometry and Attribute Compression for Voxel Scenes[J]. Computer Graphics Forum, 2016, 35(2):397-407.
    [36] De Queiroz R, Chou P A. Compression of 3D Point Clouds Using a Region-Adaptive Hierarchical Transform[J]. IEEE Transactions on Image Processing, 2016, 25(8):3947-3956.
    [37] Mekuria R, Blom K, Cesar P. Design, Implementation and Evaluation of a Point Cloud Codec for Tele-Immersive Video[J]. IEEE Transactions on Circuits&Systems for Video Technology, 2016:1-1.
    [38] Cohen R A, Tian D, Vetro A. Attribute compression for sparse point clouds using graph transforms[C]. IEEE International Conference on Image Processing. IEEE, 2016.
    [39] Zhang X, Wan W, An X. Clustering and DCT Based Color Point Cloud Compression[J]. Journal of Signal Processing Systems, 2017.
    [40] Hou J, Chau L P, He Y, et al. Sparse representation for colors of 3D point cloud via virtual adaptive sampling[C]. IEEE International Conference on Acoustics. IEEE, 2017.
    [41] De Queiroz R, Chou P A. Transform Coding for Point Clouds Using a Gaussian Process Model[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 2017:3507-3517.
    [42] Tu C, Takeuchi E, Miyajima C, et al. Continuous point cloud data compression using SLAM based prediction[C]. Intelligent Vehicles Symposium. IEEE, 2017.
    [43] Wang L, Wang L, Luo Y, et al. Point-cloud Compression Using Data Independent Method-A 3D Discrete Cosine Transform Approach[C]. IEEE International Conference on Information&Automation. IEEE, 2017.
    [44] Cui L, Xu H Y, Jang E S. Hybrid color attribute compression for point cloud data[C]. IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2017.
    [45] Cohen R A, Krivokuca M, Feng C, et al. Compression of 3-D point clouds using hierarchical patch fitting[C]. IEEE International Conference on Image Processing (ICIP). IEEE, 2017.
    [46] Milani S. Fast point cloud compression via reversible cellular automata block transform[J]. IEEE International Conference on Image Processing (ICIP). IEEE, 2017, 4013-4017.
    [47] Zhu W, Xu Y, Li L, et al. Lossless point cloud geometry compression via binary tree partition and intra prediction[C]. IEEE 19th International Workshop on Multimedia Signal Processing (MMSP). IEEE, 2017.
    [48] He C, Ran L, Wang L, et al. Point set surface compression based on shape pattern analysis[J]. Multimedia Tools and Applications, 2017, 76(20):20545-20565.
    [49] Gu S, Hou J, Zeng H, et al. Compression of 3D point clouds using 1D discrete cosine transform[C]. International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS). 2017.
    [50] Shao Y, Zhang Z, Li L, et al. Attribute compression of 3D point clouds using Laplacian sparsity optimized graph transform[C]. IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, FL, 2017, 1-4.
    [51] Xu Y, Wang S, Zhang X, et al. Rate-distortion optimized scan for point cloud color compression[C]. Visual Communications&Image Processing. IEEE, 2018.
    [52] Xu Y, Wei H, Wang S, et al. CLUSTER-BASED POINT CLOUD CODING WITH NORMAL WEIGHTED GRAPH FOURIER TRANSFORM[C]. Icassp IEEE International Conference on Acoustics. IEEE, 2018.
    [53] Zhang K, Zhu W, Xu Y, et al. Point Cloud Attribute Compression via Clustering and Intra Prediction[C]. 2018:1-5.
    [54] Kathariya B, Li L, Li Z, et al. Scalable Point Cloud Geometry Coding with Binary Tree Embedded Quadtree[C]. IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2018.
    [55] Dricot A, Pereira F, Ascenso J. Rate-Distortion Driven Adaptive Partitioning for Octree-Based Point Cloud Geometry Coding[C]. 2018:2969-2973.
    [56] Sandri G, De Queiroz R, Chou P A. Compression of Plenoptic Point Clouds Using the Region-Adaptive Hierarchical Transform[J]. 2018:1153-1157.
    [57] Garcia D C, Queiroz R L D. Intra-Frame Context-Based Octree Coding for Point-Cloud Geometry[C]. 25th IEEE International Conference on Image Processing (ICIP). IEEE, 2018.
    [58] Cao K, Xu Y, Cosman P C. PATCH-AWARE AVERAGING FILTER FOR SCALING IN POINT CLOUD COMPRESSION[C]. IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2018.
    [59] Sheikhi-Pour N, Schwarz S, Vadakital V K M, et al. Efficient 2D Video Coding of Volumetric Video Data[C]. 7th European Workshop on Visual Information Processing (EUVIP). 2018.
    [60] Sevom V F, Schwarz S, Gabbouj M. Geometry-Guided 3D Data Interpolation for Projection-Based Dynamic Point Cloud Coding[C]. 7th European Workshop on Visual Information Processing (EUVIP). 2018.
    [61] Filali A, Ricordel V, Normand N, et al. Rate-Distortion Optimized Tree-Structured Point-Lattice Vector Quantization for Compression of 3D Point Cloud Geometry[C]. International Conference on Image Processing (ICIP). 2019.
    [62] Krivokuća M, Koroteev M V, Chou P. A Volumetric Approach to Point Cloud Compression[J]. 2018.
    [63] Shao Y, Zhang Q, Li G, et al. Hybrid Point Cloud Attribute Compression Using Slice-based Layered Structure and Block-based Intra Prediction[C]. ACM Multimedia Conference. ACM, 2018.
    [64] Emerging MPEG Standards for Point Cloud Compression[J]. Emerging and Selected Topics in Circuits and Systems, IEEE Journal on, 2018.
    [65] Rente, Oliveira P D, Brites, et al. Graph-Based Static 3D Point Clouds Geometry Coding[J]. IEEE Transactions on Multimedia, 2019.
    [66] Imdad U, Asif M, Ahmad M, et al. Three Dimensional Point Cloud Compression and Decompression Using Polynomials of Degree One[J]. Symmetry, 2019, 11(2).
    [67] Sun X, Ma H, Sun Y, et al. A Novel Point Cloud Compression Algorithm Based on Clustering[J]. IEEE Robotics and Automation Letters, 2019, 4(2):2132-2139.
    [68] Gustavo, Sandri, Ricardo, et al. Compression of Plenoptic Point Clouds[J]. IEEE Transactions on Image Processing, 2019, 28(3):1419-1427.
    [69] Li L, Li Z, Zakharchenko V, et al. Advanced 3D Motion Prediction for Video Based Point Cloud Attributes Compression[C]. Data Compression Conference (DCC). 2019.
    [70] Kathariya B, Zakharchenko V, Li Z, et al. Level-of-Detail Generation Using Binary-Tree for Lifting Scheme in LiDAR Point Cloud Attributes Coding[C]. Data Compression Conference (DCC). 2019.
    [71] Quach M, Valenzise G, Dufaux F. Learning Convolutional Transforms for Lossy Point Cloud Geometry Compression. 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 2019, pp. 4320-4324.
    [72] Dricot A, Ascenso J. Hybrid Octree-Plane Point Cloud Geometry Coding[C]. 201927th European Signal Processing Conference (EUSIPCO). IEEE, 2019.
    [73] Dricot A, Ascenso J. Adaptive Multi-level Triangle Soup for Geometry-based Point Cloud Coding[C]。IEEE 21st International Workshop on Multimedia Signal Processing (MMSP). IEEE, 2019.
    [74] Gu S, Hou J, Zeng H, et al. 3D Point Cloud Attribute Compression Using Geometry-Guided Sparse Representation[J]. IEEE Transactions on Image Processing, 2019, PP (99):1-1.
    [75] Fujihashi T, Koike-Akino T, Watanabe T, et al. HoloCast:Graph Signal Processing for Graceful Point Cloud Delivery[C]. International Conference on Communications (ICC). IEEE, 2019.
    [76] Yan W, Shao Y, Liu S, et al. Deep AutoEncoder-based Lossy Geometry Compression for Point Clouds[J]. 2019.
    [77] Wang J, Zhu H, Ma Z, et al. Learned Point Cloud Geometry Compression[J]. 2019.
    [78] Chou P A, Koroteev M, Krivokuca M. A Volumetric Approach to Point Cloud Compression, Part I:Attribute Compression[J]. IEEE Transactions on Image Processing, 2019:1-1.
    [79] Krivokuca M, Chou P A, Koroteev M. A Volumetric Approach to Point Cloud Compression, Part II:Geometry Compression[J]. IEEE Transactions on Image Processing, 2019, 29.
    [80] Huang T, Liu Y. 3D Point Cloud Geometry Compression on Deep Learning[C]. In Proceedings of the 27th ACM International Conference on Multimedia (MM'19). Association for Computing Machinery, New York, NY, USA, 890-898.
    [81] Gu S, Hou J, Zeng H, et al. 3D Point Cloud Attribute Compression via Graph Prediction[J]. IEEE Signal Processing Letters, 2020, 27:176-180.
    [82] André F. R. Guarda, Rodrigues N M M, Pereira F. Point Cloud Coding:Adopting a Deep Learning-based Approach[C]. 2019 Picture Coding Symposium (PCS). IEEE, 2020.
    [83] Wei L, Wan S, Sun Z, et al. Weighted Attribute Prediction Based on Morton Code for Point Cloud Compression[C]. 2020 IEEE International Conference on Multimedia&Expo Workshops (ICMEW). IEEE, 2020.
    [84] Park J, Lee J, Park S, et al. Projection-based Occupancy Map Coding for 3D Point Cloud Compression[J]. IEIE Transactions on Smart Processing and Computing, 2020, 9(4):293-297.
    [85] Zhang X, Gao W, Liu S. Implicit Geometry Partition for Point Cloud Compression[C]. Data Compression Conference (DCC). 2020.
    [86] Pavez E, Girault B, Ortega A, et al. Region adaptive graph fourier transform for 3d point clouds[J]. 2020.
    [87] Feng Y, Liu S, Zhu Y. Real-Time Spatio-Temporal LiDAR Point Cloud Compression[J]. 2020.
    [88] Quach M, Valenzise G, Dufaux F. Folding-based compression of point cloud attributes[C]. 2020.
    [89] Huang L, Wang S, Wong K, et al. OctSqueeze:Octree-Structured Entropy Model for LiDAR Compression. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020, pp. 1310-1320.
    [90] Maurice Q, Giuseppe V, Frederic D. Improved Deep Point Cloud Geometry Compression[J]. 2020.
    [91] Wen X, Wang X, Hou J, et al. Lossy Geometry Compression Of 3d Point Cloud Data Via An Adaptive Octree-Guided Network[C]. IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2020.
    [92] Nguyen D T, Quach M, Valenzise G, et al. Learning-based lossless compression of 3D point cloud geometry[J]. 2020.
    [93] Wang J, Ding D, Li Zhu et al. Multiscale Point Cloud Geometry Compression[J]. 2020.
    [94] Milani S. A Syndrome-Based Autoencoder For Point Cloud Geometry Compression[C].IEEE International Conference on Image Processing (ICIP). IEEE, 2020.
    [95] Ma C, Li G, Zhang Q, et al. Fast Recolor Prediction Scheme in Point Cloud Attribute Compression. IEEE International Conference on Visual Communications and Image Processing (VCIP). IEEE, 2020.
    [96] Schwarz S, Preda M, Baroncini V, et al. Emerging MPEG standards for point cloud compression[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2018.
    [97] C. Loop, Q. Cai, S. O. Escolano, and P. A. Chou, "Microsoft voxelized upper bodies-Avoxelized point cloud dataset," ISO/IEC JTC1/SC29 Joint WG11/WG1(MPEG/JPEG) input document m38673/M72012, 2016.
    [98] E. d'Eon, B. Harrison, T. Myers, and P. A. Chou, "8i voxelized full bodies-A voxelized point cloud dataset," ISO/IEC JTC1/SC29 JointWG11/WG1(MPEG/JPEG) input document WG11M40059/WG1M74006, 2017.
    [99] MPEG Requirements Subgroup. Evaluation criteria for point cloud compression. Doc. ISO/IEC JTC1/SC29/WG11/N16332, Geneva, Switzerland, Jun. 2016.
    [100] Tian D, Ochimizu H, Feng C, et al. Geometric distortion metrics for point cloud compression[C]//2017 IEEE International Conference on Image Processing (ICIP). IEEE, 2017.
    [101] Huynh-Thu Q, Ghanbari M. Scope of validity of PSNR in image/video quality assessment[J]. Electronics letters, 2008, 44(13):800-801.
    [102] Sheikh H R, Bovik A C, De Veciana G. An information fidelity criterion for image quality assessment using natural scene statistics[J]. IEEE Transactions on image processing, 2005, 14(12):2117-2128.
    [103] Sheikh H R, Bovik A C. Image information and visual quality[J]. IEEE Transactions on image processing, 2006, 15(2):430-444.
    [104] Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE transactions on image processing, 2004, 13(4):600-612.
    [105] Draco.Accessed:January 21, 2020.[Online].Available:https://github.com/google/draco.
    [106] Rossignac J. 3D compression made simple:Edgebreaker with ZipandWrap on a corner-table[J]. Proceedings International Conference on Shape Modeling and Applications, Genova, Italy, 2001, pp. 278-283.
    [107] Jarek D. Asymmetric numeral systems:entropy coding combining speed of Huffman coding with compression rate of arithmetic coding. 2013.
  • [1] 付永健, 李宗春, 何华.  点云内在属性因子驱动的自适应滚球算法 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20180390
    [2] 李鹏程, 徐青, 邢帅, 刘志青, 张军军.  利用波形信息的加权曲面拟合LiDAR点云滤波 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20150377
    [3] 熊汉江, 郑先伟, 丁友丽, 张艺, 吴秀杰, 周妍.  基于2D-3D语义传递的室内三维点云模型语义分割 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20180190
    [4] 张继贤, 段敏燕, 林祥国, 臧艺.  激光雷达点云电力线三维重建模型的对比与分析 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20150385
    [5] 肖巍峰, 邓敏, 李朝奎.  三维点云多尺度等值线模型Morphing变换方法研究 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20140107
    [6] 龚健雅, 崔婷婷, 单杰, 季顺平, 黄玉春.  利用车载移动测量数据的建筑物立面建模方法 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j .whu g is20150173
    [7] 杨惠珍, 赵文光, 张 萍, 张瑞芳.  云闪空间定位的三维网格搜索算法研究 . 武汉大学学报 ● 信息科学版,
    [8] 云闪空间定位的三维网格搜索算法研究 . 武汉大学学报 ● 信息科学版,
    [9] 托雷, 康志忠, 谢远成, 王保前.  利用三维点云数据的地铁隧道断面连续截取方法研究 . 武汉大学学报 ● 信息科学版,
    [10] 孙轩, 杨必胜, 李清泉, 姜少波.  复杂三维建筑物模型的线性几何编码 . 武汉大学学报 ● 信息科学版,
    [11] 方芳, 程效军.  海量散乱点云快速压缩算法 . 武汉大学学报 ● 信息科学版,
    [12] 杨荣华, 花向红, 邱卫宁, 耿涛.  地面三维激光扫描点云角度分辨率研究 . 武汉大学学报 ● 信息科学版,
    [13] 孙殿柱, 刘健, 李延瑞, 孙永伟.  三维散乱点云的Voronoi拓扑近邻点集查询算法 . 武汉大学学报 ● 信息科学版,
    [14] 刘亚文, 宋守东.  利用航空影像、点云数据和矢量图进行简单房屋三维重建方法研究 . 武汉大学学报 ● 信息科学版,
    [15] 赵俭辉, 龙成江, 丁乙华, 袁志勇.  一种基于立方体小栅格的K邻域快速搜索算法 . 武汉大学学报 ● 信息科学版,
    [16] 赵煦, 周克勤, 闫利, 邓非.  基于激光点云的大型文物景观三维重建方法 . 武汉大学学报 ● 信息科学版,
    [17] 朱庆, 李逢春, 张叶廷.  一种改进的三维点集表面重建的区域生长算法 . 武汉大学学报 ● 信息科学版,
    [18] 郑顺义, 苏国中, 张祖勋.  三维点集的自动表面重构算法 . 武汉大学学报 ● 信息科学版,
    [19] 史文中.  三维地理信息系统中几何特征的误差模型 . 武汉大学学报 ● 信息科学版,
    [20] 李清泉, 李德仁.  八叉树的三维行程编码 . 武汉大学学报 ● 信息科学版,
  • 加载中
计量
  • 文章访问数:  523
  • HTML全文浏览量:  134
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-26
  • 网络出版日期:  2022-03-12

点云压缩研究进展与趋势

doi: 10.13203/j.whugis20210103
    基金项目:

    城市空间信息工程北京市重点实验室资助项目(2020208);湖北省自然科学基金(2021CFB352)。

    作者简介:

    张卉冉,硕士,主要从事三维激光扫描数据处理方面的研究。zhr1013@whu.edu.cn

  • 中图分类号: P237.3

摘要: 三维点云为物理世界精细数字化提供了高精度的三维表达方式,广泛应用于三维建模、智慧城市、自主导航系统、增强现实等领域。然而,点云的数据海量、非结构化、密度不均等特点给点云的存储和传输带来了巨大挑战。因此在有限的存储空间容量和网络传输带宽中实现低比特率、低失真率的点云压缩具有着重要的理论意义和实用价值。围绕点云压缩中的研究现状、标准框架和评价指标,阐述国内外点云压缩算法研究工作、运动图像专家组(Moving Picture Experts Group,MPEG)压缩标准框架以及几何和属性信息质量评价指标的最新进展,分析比较三种开源点云压缩算法在点云压缩公开数据集下的性能表现,并对点云压缩的主要发展方向趋势予以展望。

English Abstract

张卉冉, 董震, 杨必胜, 黄荣刚, 徐大展. 点云压缩研究进展与趋势[J]. 武汉大学学报 ● 信息科学版. doi: 10.13203/j.whugis20210103
引用本文: 张卉冉, 董震, 杨必胜, 黄荣刚, 徐大展. 点云压缩研究进展与趋势[J]. 武汉大学学报 ● 信息科学版. doi: 10.13203/j.whugis20210103
ZHANG Huiran, DONG Zhen, YANG Bisheng, HUANG Ronggang, XU Dazhan. Progress and Perspectives of Point Cloud Compression[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20210103
Citation: ZHANG Huiran, DONG Zhen, YANG Bisheng, HUANG Ronggang, XU Dazhan. Progress and Perspectives of Point Cloud Compression[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20210103
参考文献 (107)

目录

    /

    返回文章
    返回