[1]
|
Shi J, Ouyang C, Huang Y, et al. Assessment of BDS-3 global positioning service:ephemeris, SPP, PPP, RTK, and new signal[J]. GPS Solutions, 2020,24(3) |
[2]
|
Lv Y, Geng T, Zhao Q, et al. Initial assessment of BDS-3 preliminary system signal-in-space range error[J]. GPS Solutions,2020, 24(1):1-13 |
[3]
|
Hu C,Wang Q,Wang Z,et al. A New-Generation BeiDou (BDS-3) Experimental Satellite Precise Orbit Determination with an Improved Cycle-Slip Detection and Repair Algorithm[J]. Sensors 2018, 18(5):1402 |
[4]
|
Li J, Yang Y, He H, et al. Benefits of BDS-3 B1C/B1I/B2a triple-frequency signals on precise positioning and ambiguity resolution[J]. GPS Solutions, 2020, 24(4):1-10 |
[5]
|
Zhang X, Wu M, Liu W, et al. Initial assessment of the COMPASS/BeiDou-3:New-generation navigation signals[J]. Journal of geodesy, 2017, 91(10):1225-1240 |
[6]
|
Jiao G, Song S, Ge Y, et al. Assessment of BeiDou-3 and multi-GNSS precise point positioning performance[J]. Sensors, 2019, 19(11):2496 |
[7]
|
Zhang Y, Wang H, Chen J, et al. Calibration and impact of BeiDou satellite-dependent timing group delay bias[J]. Remote Sensing, 2020, 12(1):192 |
[8]
|
Dai P, Ge Y, Qin W, et al. BDS-3 time group delay and its effect on standard point positioning[J]. Remote Sensing, 2019, 11(15):1819 |
[9]
|
Jiao G, Song S, Liu Y, et al. Analysis and Assessment of BDS-2 and BDS-3 Broadcast Ephemeris:Accuracy, the Datum of Broadcast Clocks and Its Impact on Single Point Positioning[J]. Remote Sensing, 2020, 12(13):2081 |
[10]
|
Luo X, Lou Y, Gong X, et al. Benefit of sparse reference network in BDS single point positioning with single-frequency measurements[J]. The Journal of Navigation, 2018, 71(2):403-418 |
[11]
|
Mu R, Dang Y, Xu C. BDS-3/GNSS data quality and positioning performance analysis[C]//China Satellite Navigation Conference. Springer, Singapore, 2020:368-379 |
[12]
|
Guan Q, Fan C, Zheng J, et al. Multistep weighted least squares estimation method for improving single-point positioning accuracy[J]. Journal of Applied Remote Sensing, 2019, 13(3):038503 |
[13]
|
Yang Y, Xu Y, Li J, et al. Progress and performance evaluation of BeiDou global navigation satellite system:Data analysis based on BDS-3 demonstration system[J]. Sci. China Earth Sci, 2018, 61(5):614-624 |
[14]
|
Cai C, Pan L, Gao Y. A precise weighting approach with application to combined L1/B1 GPS/BeiDou positioning[J]. The Journal of Navigation, 2014, 67(5):911-925 |
[15]
|
Zhang B C, Ou J K, Yuan Y B, et al. Calibration of slant total electron content (sTEC) and Satellite-Receiver's differential code biases (DCBs) with uncombined precise point positioning (PPP) technique[J]. Acta Geodatica et Cartographica Sinica, 2011,40(4):447-453 |
[16]
|
Wang A, Chen J, Zhang Y, et al. Evaluating the impact of CNES real-time ionospheric products on multi-GNSS single-frequency positioning using the IGS real-time service[J]. Advances in Space Research, 2020, 66(11):2516-2527 |
[17]
|
Zhang Y, Chen J, Gong X, et al. The update of BDS-2 TGD and its impact on positioning[J]. Advances in Space Research, 2020, 65(11):2645-2661 |
[18]
|
Wang J J, Wang J, Sinclair D, et al. Tropospheric delay estimation for pseudolite positioning[J]. Positioning, 2005, 1(9) |
[19]
|
Dawidowicz K. Igs08.atx to igs14.atx change dependent differences in a GNSS-derived position time series[J].Acta Geodyn. Geomater. 2018:363-378 |
[20]
|
Rebischung P, Schmid R. IGS14/igs14. atx:a new framework for the IGS products[C]//AGU Fall Meeting 2016,2016 |
[21]
|
Lemmon T R, Gerdan G P. The Influence of the Number of Satellites on the Accuracy of RTK GPS Positions[J]. Australian surveyor, 1999, 44(1):64-70 |
[22]
|
Han Y B, Ma L H, Qiao Q Y, et al. Functions of retired GEO communication satellites in improving the PDOP value of CAPS[J]. Science in China Series G:Physics, Mechanics and Astronomy, 2009, 52(3):423-433 |
[23]
|
D'EON R G, Delparte D. Effects of radio-collar position and orientation on GPS radio-collar performance, and the implications of PDOP in data screening[J]. Journal of Applied Ecology, 2005, 42(2):383-388 |