[1]
|
童庆禧, 张兵, 张立福. 中国高光谱遥感的前沿进展[J]. 遥感学报, 2016, 20(5): 689-707 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201605003.htm
Tong Qingxi, Zhang Bing, Zhang Lifu. Current Progress of Hyperspectral Remote Sensing in China[J]. Journal of Remote Sensing, 2016, 20(5): 689-707 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201605003.htm |
[2]
|
Song X P, Hansen M C, Stehman S V, et al. Global Land Change from 1982 to 2016[J]. Nature, 2018, 560(7 720): 639-643 http://d.wanfangdata.com.cn/periodical/a2714be619d78f480f9736db0d8328b0 |
[3]
|
Lu D, Mausel P, Brondízio E, et al. Change Detection Techniques[J]. International Journal of Remote Sensing, 2004, 25(12): 2 365-2 401 |
[4]
|
汤冬梅, 樊辉, 张瑶. Landsat时序变化检测综述[J]. 地球信息科学学报, 2017, 19(8): 1 069-1 079 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201708009.htm
Tang Dongmei, Fan Hui, Zhang Yao. Review on Landsat Time Series Change Detection Methods[J]. Journal of Geo-Information Science, 2017, 19(8): 1 069-1 079 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201708009.htm |
[5]
|
Zhu Z, Wulder M A, Roy D P, et al. Benefits of the Free and Open Landsat Data Policy[J]. Remote Sensing of Environment, 2019, 224: 382-385 http://www.sciencedirect.com/science/article/pii/S0034425719300719 |
[6]
|
Wardlow B, Egbert S, Kastens J. Analysis of Time-Series MODIS 250 m Vegetation Index Data for Crop Classification in the US Central Great Plains[J]. Remote Sensing of Environment, 2007, 108(3): 290-310 |
[7]
|
Zhu Z, Woodcock C E, Olofsson P. Continuous Monitoring of Forest Disturbance Using all Available Landsat Imagery[J]. Remote Sensing of Environment, 2012, 122: 75-91 |
[8]
|
Verbesselt J, Hyndman R, Zeileis A, et al. Phenological Change Detection While Accounting for Abrupt and Gradual Trends in Satellite Image Time Series[J]. Remote Sensing of Environment, 2010, 114(12): 2 970-2 980 http://www.sciencedirect.com/science/article/pii/S0034425710002336 |
[9]
|
Verbesselt J, Zeileis A, Herold M. Near Real-Time Disturbance Detection Using Satellite Image Time Series[J]. Remote Sensing of Environment, 2012, 123: 98-108 http://www.sciencedirect.com/science/article/pii/S0034425712001150 |
[10]
|
Howarth P J, Wickware G M. Procedures for Change Detection Using Landsat Digital Data[J]. International Journal of Remote Sensing, 1981, 2(3): 277-291 |
[11]
|
李天宏, 韩鹏. 厦门市土地利用/覆盖动态变化的遥感检测与分析[J]. 地理科学, 2001, 21(6): 537-543 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX200106009.htm
Li Tianhong, Han Peng. Land Use/Cover Change Detection and Analysis with Remote Sensing in Xiamen City[J]. Scientia Geographica Sinica, 2001, 21(6): 537-543 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX200106009.htm |
[12]
|
贾凌, 都金康, 赵萍, 等. 基于TM的海南省土地利用/覆盖动态变化的遥感监测和分析[J]. 遥感信息, 2003 (1): 22-25, 56 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXX200301009.htm
Jia Ling, Du Jinkang, Zhao Ping, et al. Land Use Dynamic Monitoring in Hainan by TM Data[J]. Remote Sensing Information, 2003 (1): 22-25, 56 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXX200301009.htm |
[13]
|
翟卫欣, 程承旗, 陈波. 基于Landsat影像的雄安新区2014-2018年土地利用变化检测[J]. 地理信息世界, 2019, 26(4): 38-43 https://www.cnki.com.cn/Article/CJFDTOTAL-CHRK201904009.htm
Zhai Weixin, Cheng Chengqi, Chen Bo. Land Use Change Detection Based on Landsat Image in Xiong'an New Area(2014-2018)[J]. Geomatics World, 2019, 26(4): 38-43 https://www.cnki.com.cn/Article/CJFDTOTAL-CHRK201904009.htm |
[14]
|
季顺平, 田思琦, 张驰. 利用全空洞卷积神经元网络进行城市土地覆盖分类与变化检测[J]. 武汉大学学报·信息科学版, 2020, 45(2): 233-241 doi: 10.13203/j.whugis20180481
Ji Shunping, Tian Siqi, Zhang Chi. Urban Land Cover Classification and Change Detection Using Fully Atrous Convolutional Neural Network[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2): 233-241 doi: 10.13203/j.whugis20180481 |
[15]
|
Sexton J O, Urban D L, Donohue M J, et al. Long-Term Land Cover Dynamics by Multi-Temporal Classification Across the Landsat-5 Record[J]. Remote Sensing of Environment, 2013, 128: 246-258 http://www.sciencedirect.com/science/article/pii/S0034425712003926 |
[16]
|
Chen J, Chen X H, Cui X H, et al. Change Vector Analysis in Posterior Probability Space: A New Method for Land Cover Change Detection[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(2): 317-321 http://ieeexplore.ieee.org/document/5597922/ |
[17]
|
Li H J, Li H Y, Wang J, et al. Monitoring High-Altitude River Ice Distribution at the Basin Scale in the Northeastern Tibetan Plateau from a Landsat Time-Series Spanning 1999-2018[J]. Remote Sensing of Environment, 2020, 247: 111 915 http://www.sciencedirect.com/science/article/pii/S0034425720302856 |
[18]
|
Pickens A H, Hansen M C, Hancher M, et al. Mapping and Sampling to Characterize Global Inland Water Dynamics from 1999 to 2018 with Full Landsat Time-Series[J]. Remote Sensing of Environment, 2020, 243: 111 792 http://www.sciencedirect.com/science/article/pii/S0034425720301620 |
[19]
|
Muttitanon W, Tripathi N K. Land Use/Land Cover Changes in the Coastal Zone of Ban Don Bay, Thailand Using Landsat 5 TM Data[J]. International Journal of Remote Sensing, 2005, 26(11): 2 311-2 323 |
[20]
|
McRoberts R E. Post-Classification Approaches to Estimating Change in Forest Area Using Remotely Sensed Auxiliary Data[J]. Remote Sensing of Environment, 2014, 151: 149-156 |
[21]
|
Coulter L L, Stow D A, Tsai Y H, et al. Classification and Assessment of Land Cover and Land Use Change in Southern Ghana Using Dense Stacks of Landsat 7 ETM+ Imagery[J]. Remote Sensing of Environment, 2016, 184: 396-409 http://www.sciencedirect.com/science/article/pii/S0034425716302693 |
[22]
|
Xu Y D, Yu L, Zhao F R, et al. Tracking Annual Cropland Changes from 1984 to 2016 Using Time-Series Landsat Images with a Change-Detection and Post-Classification Approach: Experiments from Three Sites in Africa[J]. Remote Sensing of Environment, 2018, 218: 13-31 http://www.sciencedirect.com/science/article/abs/pii/S003442571830419X |
[23]
|
Paul S, Saxena K G, Nagendra H, et al. Tracing Land Use and Land Cover Change in Peri-Urban Delhi, India, over 1973-2017 Period[J]. Environ Monit Assess, 2021, 193: 52 http://www.researchgate.net/publication/348360448_Tracing_land_use_and_land_cover_change_in_peri-urban_Delhi_India_over_1973-2017_period/download |
[24]
|
Wang J, Xiao X M, Liu L, et al. Mapping Sugarcane Plantation Dynamics in Guangxi, China, by Time Series Sentinel-1, Sentinel-2 and Landsat Ima-ges[J]. Remote Sensing of Environment, 2020, 247: 111 951 http://www.researchgate.net/publication/342343154_Mapping_sugarcane_plantation_dynamics_in_Guangxi_China_by_time_series_Sentinel-1_Sentinel-2_and_Landsat_images |
[25]
|
Hu J R, Zhang Y Z. Seasonal Change of Land-Use/Land-Cover (LULC) Detection Using MODIS Data in Rapid Urbanization Regions: A Case Study of the Pearl River Delta Region (China)[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(4): 1 913-1 920 |
[26]
|
Xian G, Homer C, Fry J. Updating the 2001 National Land Cover Database Land Cover Classification to 2006 by Using Landsat Imagery Change Detection Methods[J]. Remote Sensing of Environment, 2009, 113(6): 1 133-1 147 http://www.sciencedirect.com/science/article/pii/S0034425709000340 |
[27]
|
孙晓霞, 张继贤, 燕琴, 等. 遥感影像变化检测方法综述及展望[J]. 遥感信息, 2011, 26(1): 119-123 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXX201101022.htm
Sun Xiaoxia, Zhang Jixian, Yan Qin, et al. A Summary on Current Techniques and Prospects of Remote Sensing Change Detection[J]. Remote Sensing Information, 2011, 26(1): 119-123 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXX201101022.htm |
[28]
|
张良培, 武辰. 多时相遥感影像变化检测的现状与展望[J]. 测绘学报, 2017, 46(10): 1 447-1 459 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201710028.htm
Zhang Liangpei, Wu Chen. Advance and Future Development of Change Detection for Multi-Temporal Remote Sensing Imagery[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1 447-1 459 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201710028.htm |
[29]
|
Singh A. Review Article Digital Change Detection Techniques Using Remotely-Sensed Data[J]. International Journal of Remote Sensing, 1989, 10(6): 989-1 003 doi: 10.1080/01431168908903939 |
[30]
|
Soares V P, Hoffer R M. Eucalyptus Forest Change Classification Using Multi-date Landsat TM Data[J]. Proceedings of SPIE, 1995, 2 314: 281-291 http://proceedings.spiedigitallibrary.org/mobile/proceeding.aspx?articleid=977615 |
[31]
|
Mas J F. Monitoring Land-Cover Changes: A Comparison of Change Detection Techniques[J]. International Journal of Remote Sensing, 1999, 20(1): 139-152 |
[32]
|
Woodcock C E, Macomber S A, Pax-Lenney M, et al. Monitoring Large Areas for Forest Change Using Landsat: Generalization Across Space, Time and Landsat Sensors[J]. Remote Sensing of Environment, 2001, 78(1/2): 194-203 http://www.sciencedirect.com/science/article/pii/S0034425701002590 |
[33]
|
Huang Z, Jia X P, Ge L L. Sampling Approaches for One-Pass Land-Use/Land-Cover Change Mapping[J]. International Journal of Remote Sensing, 2010, 31(6): 1 543-1 554 |
[34]
|
Wang C, Xu M X, Wang X, et al. Object-Oriented Change Detection Approach for High-Resolution Remote Sensing Images Based on Multiscale Fusion[J]. Journal of Applied Remote Sensing, 2013, 7(1): 073696 doi: 10.1117/1.JRS.7.073696 |
[35]
|
Gil-Yepes J L, Ruiz L A, Recio J A, et al. Description and Validation of a New Set of Object-Based Temporal Geostatistical Features for Land-Use/Land-Cover Change Detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 121: 77-91 |
[36]
|
Tucker C J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation[J]. Remote Sensing of Environment, 1979, 8(2): 127-150 |
[37]
|
Huete A, Liu H, Leeuwen W J D. The Use of Vegetation Indices in Forested Regions: Issues of Linearity and Saturation[J]. International Geoscience and Remote Sensing Symposium on Remote Sensing, 1997, 4: 1 966-1 968 |
[38]
|
Zhang L F, Qiao N, Baig M H A, et al. Monitoring Vegetation Dynamics Using the Universal Normali-zed Vegetation Index (UNVI): An Optimized Vegetation Index-VIUPD[J]. Remote Sensing Letters, 2019, 10(7): 629-638 |
[39]
|
Lunetta R S, Knight J F, Ediriwickrema J, et al. Land-Cover Change Detection Using Multi-Temporal MODIS NDVI Data[J]. Remote Sensing of Environment, 2006, 105(2): 142-154 |
[40]
|
Huang C Q, Goward S N, Masek J G, et al. An Automated Approach for Reconstructing Recent Forest Disturbance History Using Dense Landsat Time Series Stacks[J]. Remote Sensing of Environment, 2010, 114(1): 183-198 |
[41]
|
Li X C, Gong P, Liang L. A 30-Year (1984-2013) Record of Annual Urban Dynamics of Beijing City Derived from Landsat Data[J]. Remote Sensing of Environment, 2015, 166: 78-90 |
[42]
|
Huang H B, Chen Y L, Clinton N, et al. Mapping Major Land Cover Dynamics in Beijing Using all Landsat Images in Google Earth Engine[J]. Remote Sensing of Environment, 2017, 202: 166-176 |
[43]
|
周小成, 汪小钦, 吴波, 等. 城镇扩张的多源遥感图像动态监测分析[J]. 地球信息科学, 2008(3): 332-337 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX200803010.htm
Zhou Xiaocheng, Wang Xiaoqin, Wu Bo, et al. An Analysis on Dynamic Monitoring of Urban Sprawal Using Multi-Temporal Remote Sensing Images from Multi-Source Based on the Knowledge[J]. Geo-Information Science, 2008(3): 332-337 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX200803010.htm |
[44]
|
樊勇, 朱曦, 张圣笛, 等. 基于多源遥感数据的淮河流域城镇扩张研究[J]. 农业机械学报, 2016, 47(11): 252-261 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201611035.htm
Fan Yong, Zhu Xi, Zhang Shengdi, et al. Urban Expansion of Huaihe River Basin Based on Multi-Source Remote Sensing Data[J]. Transactions of the Chinese Society of Agricultural Machinery, 2016, 47(11): 252-261 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201611035.htm |
[45]
|
Liu X P, Hu G H, Chen Y M, et al. High-Resolution Multi-Temporal Mapping of Global Urban Land Using Landsat Images Based on the Google Earth Engine Platform[J]. Remote Sensing of Environment, 2018, 209: 227-239 |
[46]
|
Gong P, Li X C, Zhang W. 40-Year (1978-2017) Human Settlement Changes in China Reflected by Impervious Surfaces from Satellite Remote Sensing[J]. Science Bulletin, 2019, 64(11): 756-763 |
[47]
|
Gong P, Li X C, Wang J, et al. Annual Maps of Global Artificial Impervious Area (GAIA) Between 1985 and 2018[J]. Remote Sensing of Environment, 2020, 236: 111 510 |
[48]
|
Wang Y B, Ma J, Xiao X M, et al. Long-Term Dynamic of Poyang Lake Surface Water: A Mapping Work Based on the Google Earth Engine Cloud Platform[J]. Remote Sensing, 2019, 11(3): 313 |
[49]
|
Feng L, Hu C M, Chen X L, et al. Assessment of Inundation Changes of Poyang Lake Using MODIS Observations Between 2000 and 2010[J]. Remote Sensing of Environment, 2012, 121: 80-92 |
[50]
|
Wang X X, Xiao X M, Zou Z H, et al. Tracking Annual Changes of Coastal Tidal Flats in China During 1986-2016 Through Analyses of Landsat Images with Google Earth Engine[J]. Remote Sensing of Environment, 2020, 238: 110987 |
[51]
|
Dong J W, Xiao X M, Menarguez M A, et al. Mapping Paddy Rice Planting Area in Northeastern Asia with Landsat 8 Images, Phenology-Based Algorithm and Google Earth Engine[J]. Remote Sensing of Environment, 2016, 185: 142-154 |
[52]
|
Xiao X M, Boles S, Liu J Y, et al. Mapping Paddy Rice Agriculture in Southern China Using Multi-Temporal MODIS Images[J]. Remote Sensing of Environment, 2005, 95(4): 480-492 |
[53]
|
Nelson R F. Detecting Forest Canopy Change due to Insect Activity Using Landsat MSS[J]. Photogrammetric Engineering and Remote Sensing, 1983, 49(9): 1 303-1 314 http://europepmc.org/abstract/AGR/IND83103205 |
[54]
|
Jin S M, Sader S A. Comparison of Time Series Tasseled Cap Wetness and the Normalized Difference Moisture Index in Detecting Forest Disturbances[J]. Remote Sensing of Environment, 2005, 94(3): 364-372 |
[55]
|
Cunningham S, Rogan J, Martin D, et al. Mapping Land Development Through Periods of Economic Bubble and Bust in Massachusetts Using Landsat Time Series Data[J]. GIScience & Remote Sensing, 2015, 52(4): 397-415 doi: 10.1080/15481603.2015.1045277 |
[56]
|
Vorovencii I. A Change Vector Analysis Technique for Monitoring Land Cover Changes in Copsa Mica, Romania, in the Period 1985-2011[J]. Environmental Monitoring and Assessment, 2014, 186(9): 5 951-5 968 |
[57]
|
Bolton D K, Coops N C, Wulder M A. Characterizing Residual Structure and Forest Recovery Following High-Severity Fire in the Western Boreal of Canada Using Landsat Time-Series and Airborne LiDAR Data[J]. Remote Sensing of Environment, 2015, 163: 48-60 |
[58]
|
Parker B M, Lewis T, Srivastava S K. Estimation and Evaluation of Multi-Decadal Fire Severity Patterns Using Landsat Sensors[J]. Remote Sensing of Environment, 2015, 170: 340-349 |
[59]
|
Schroeder T A, Wulder M A, Healey S P, et al. Detecting Post-Fire Salvage Logging from Landsat Change Maps and National Fire Survey Data[J]. Remote Sensing of Environment, 2012, 122: 166-174 |
[60]
|
Zanotta D C, Bruzzone L, Bovolo F, et al. An Adaptive Semisupervised Approach to the Detection of User-Defined Recurrent Changes in Image Time Series[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(7): 3 707-3 719 |
[61]
|
Wold S, Esbensen K, Geladi P. Principal Component Analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2(1/2/3): 37-52 |
[62]
|
Eastman J R, Fulk M. Long Sequence Time Series Evaluation Using Standard Principal Components[J]. Photogrammetric Engineering and Remote Sensing, 1993, 59(6): 991-996 |
[63]
|
Fung T, Ledrew E. Application of Principal Components Analysis to Change Detection[J]. Photogrammetric Engineering and Remote Sensing, 1987, 53(12): 1 649-1 658 |
[64]
|
Hirosawa Y, Marsh S E, Kliman D H. Application of Standardized Principal Component Analysis to Land-Cover Characterization Using Multitemporal AVHRR Data[J]. Remote Sensing of Environment, 1996, 58(3): 267-281 |
[65]
|
Yeh A G O, Li X. An Integrated Remote Sensing and GIS Approach in the Monitoring and Evaluation of Rapid Urban Growth for Sustainable Development in the Pearl River Delta, China[J]. International Planning Studies, 1997, 2(2): 193-210 |
[66]
|
Deng J S, Wang K, Deng Y H, et al. PCA-Based Land-Use Change Detection and Analysis Using Multitemporal and Multisensor Satellite Data[J]. International Journal of Remote Sensing, 2008, 29(16): 4 823-4 838 |
[67]
|
Deng J S, Huang Y B, Chen B J, et al. A Methodo-logy to Monitor Urban Expansion and Green Space Change Using a Time Series of Multi-Sensor SPOT and Sentinel-2A Images[J]. Remote Sensing, 2019, 11(10): 1 230 |
[68]
|
邓劲松, 李君, 王珂. 基于多时相PCA光谱增强和多源光谱分类器的SPOT影像土地利用变化检测[J]. 光谱学与光谱分析, 2009, 29(6): 1 627-1 631 https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN200906049.htm
Deng Jinsong, Li Jun, Wang Ke. Detecting Land Use Change Using PCA-Enhancement and Multi-Source Classifier from SPOT Images[J]. Spectroscopy and Spectral Analysis, 2009, 29(6): 1 627-1 631 https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN200906049.htm |
[69]
|
Gong P. Change Detection Using Principal Component Analysis and Fuzzy Set Theory[J]. Canadian Journal of Remote Sensing, 1993, 19(1): 22-29 |
[70]
|
Parmentier B. Characterization of Land Transitions Patterns from Multivariate Time Series Using Seasonal Trend Analysis and Principal Component Analysis[J]. Remote Sensing, 2014, 6(12): 12 639-12 665 |
[71]
|
de Almeida T I R, Penatti N C, Ferreira L G, et al. Principal Component Analysis Applied to a Time Series of MODIS Images: The Spatio-Temporal Variability of the Pantanal Wetland, Brazil[J]. Wetlands Ecology and Management, 2015, 23(4): 737-748 |
[72]
|
Li J H, Wang S S, Zhou F Q. Time Series Analysis of Long-Term Terrestrial Water Storage over Canada from GRACE Satellites Using Principal Component Analysis[J]. Canadian Journal of Remote Sensing, 2016, 42(3): 161-170 |
[73]
|
Zhang Z M, Ouyang Z Y, Xiao Y, et al. Using Principal Component Analysis and Annual Seasonal Trend Analysis to Assess Karst Rocky Desertification in Southwestern China[J]. Environmental Monitoring and Assessment, 2017, 189(6): 269 |
[74]
|
Kassawmar N T, Rao K R M, Abraha G L. An Integrated Approach for Spatio-temporal Variability Analysis of Wetlands: A Case Study of Abaya and Chamo Lakes, Ethiopia[J]. Environmental Monitoring and Assessment, 2011, 180(1-4): 313-324 |
[75]
|
Gómez C, Wulder M A, White J C, et al. Characterizing 25 Years of Change in the Area, Distribution, and Carbon Stock of Mediterranean Pines in Central Spain[J]. International Journal of Remote Sensing, 2012, 33(17): 5 546-5 573 doi: 10.1080/01431161.2012.663115 |
[76]
|
Mostafiz C, Chang N B. Tasseled Cap Transformation for Assessing Hurricane Landfall Impact on a Coastal Watershed[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 73: 736-745 |
[77]
|
Allen H, Simonson W, Parham E, et al. Satellite Remote Sensing of Land Cover Change in a Mixed Agro-Silvo-Pastoral Landscape in the Alentejo, Portugal[J]. International Journal of Remote Sensing, 2018, 39(14): 4 663-4 683 |
[78]
|
Kennedy R E, Yang Z Q, Cohen W B. Detecting Trends in Forest Disturbance and Recovery Using Yearly Landsat Time Series: 1. LandTrendr-Temporal Segmentation Algorithms[J]. Remote Sensing of Environment, 2010, 114(12): 2 897-2 910 |
[79]
|
Kennedy R, Yang Z Q, Gorelick N, et al. Implementation of the LandTrendr Algorithm on Google Earth Engine[J]. Remote Sensing, 2018, 10(5): 691 |
[80]
|
Kennedy R E, Yang Z Q, Cohen W B, et al. Spatial and Temporal Patterns of Forest Disturbance and Regrowth Within the Area of the Northwest Forest Plan[J]. Remote Sensing of Environment, 2012, 122: 117-133 |
[81]
|
Pflugmacher D, Cohen W B, Kennedy R E, et al. Using Landsat-Derived Disturbance and Recovery History and LiDAR to Map Forest Biomass Dyna-mics[J]. Remote Sensing of Environment, 2014, 151: 124-137 |
[82]
|
Grogan K, Pflugmacher D, Hostert P, et al. Cross-Border Forest Disturbance and the Role of Natural Rubber in Mainland Southeast Asia Using Annual Landsat Time Series[J]. Remote Sensing of Environment, 2015, 169: 438-453 |
[83]
|
Kennedy R E, Yang Z Q, Braaten J, et al. Attribution of Disturbance Change Agent from Landsat Time-Series in Support of Habitat Monitoring in the Puget Sound Region, USA[J]. Remote Sensing of Environment, 2015, 166: 271-285 |
[84]
|
Senf C, Pflugmacher D, Wulder M A, et al. Characterizing Spectral-Temporal Patterns of Defoliator and Bark Beetle Disturbances Using Landsat Time Series[J]. Remote Sensing of Environment, 2015, 170: 166-177 |
[85]
|
Yang Y J, Erskine P D, Lechner A M, et al. Detecting the Dynamics of Vegetation Disturbance and Recovery in Surface Mining Area via Landsat Imagery and LandTrendr Algorithm[J]. Journal of Cleaner Production, 2018, 178: 353-362 |
[86]
|
Filippelli S K, Falkowski M J, Hudak A T, et al. Monitoring Pinyon-Juniper Cover and Aboveground Biomass Across the Great Basin[J]. Environmental Research Letters, 2020, 15(2): 025004 |
[87]
|
Myroniuk V, Bilous A, Khan Y, et al. Tracking Rates of Forest Disturbance and Associated Carbon Loss in Areas of Illegal Amber Mining in Ukraine Using Landsat Time Series[J]. Remote Sensing, 2020, 12(14): 2 235 http://www.researchgate.net/publication/342898105_Tracking_Rates_of_Forest_Disturbance_and_Associated_Carbon_Loss_in_Areas_of_Illegal_Amber_Mining_in_Ukraine_Using_Landsat_Time_Series |
[88]
|
Zhu L H, Liu X N, Wu L, et al. Long-Term Monitoring of Cropland Change near Dongting Lake, China, Using the LandTrendr Algorithm with Landsat Imagery[J]. Remote Sensing, 2019, 11(10): 1 234 |
[89]
|
He T T, Xiao W, Zhao Y L, et al. Identification of Waterlogging in Eastern China Induced by Mining Subsidence: A Case Study of Google Earth Engine Time-Series Analysis Applied to the Huainan Coal Field[J]. Remote Sensing of Environment, 2020, 242: 111 742 |
[90]
|
Verbesselt J, Hyndman R, Newnham G, et al. Detecting Trend and Seasonal Changes in Satellite Image Time Series[J]. Remote Sensing of Environment, 2010, 114(1): 106-115 |
[91]
|
Verbesselt J, Hyndman R, Zeileis A, et al. Phenological Change Detection While Accounting for Abrupt and Gradual Trends in Satellite Image Time Series[J]. Remote Sensing of Environment, 2010, 114(12): 2 970-2 980 |
[92]
|
Lambert J, Drenou C, Denux J P, et al. Monitoring Forest Decline Through Remote Sensing Time Series Analysis[J]. GIScience & Remote Sensing, 2013, 50(4): 437-457 |
[93]
|
Chen L F, Michishita R, Xu B. Abrupt Spatiotemporal Land and Water Changes and Their Potential Drivers in Poyang Lake, 2000-2012[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 98: 85-93 |
[94]
|
Dutrieux L P, Verbesselt J, Kooistra L, et al. Monitoring Forest Cover Loss Using Multiple Data Streams, a Case Study of a Tropical Dry Forest in Bolivia[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 107: 112-125 |
[95]
|
Hutchinson J M S, Jacquin A, Hutchinson S L, et al. Monitoring Vegetation Change and Dynamics on US Army Training Lands Using Satellite Image Time Series Analysis[J]. Journal of Environmental Management, 2015, 150: 355-366 |
[96]
|
Grogan K, Pflugmacher D, Hostert P, et al. Mapping Clearances in Tropical Dry Forests Using Breakpoints, Trend, and Seasonal Components from MODIS Time Series: Does Forest Type Matter?[J]. Remote Sensing, 2016, 8(8): 657 |
[97]
|
Fang X, Zhu Q, Ren L, et al. Large-scale Detection of Vegetation Dynamics and Their Potential Drivers Using MODIS Images and BFAST: A Case Study in Quebec, Canada[J]. Remote Sensing of Environment, 2018, 206: 391-402 |
[98]
|
Geng L Y, Che T, Wang X F, et al. Detecting Spatiotemporal Changes in Vegetation with the BFAST Model in the Qilian Mountain Region During 2000-2017[J]. Remote Sensing, 2019, 11(2): 103 |
[99]
|
Zhu Z, Woodcock C E, Olofsson P. Continuous Monitoring of Forest Disturbance Using all Available Landsat Imagery[J]. Remote Sensing of Environment, 2012, 122: 75-91 |
[100]
|
Zhu Z, Woodcock C E. Continuous Change Detection and Classification of Land Cover Using all Available Landsat Data[J]. Remote Sensing of Environment, 2014, 144: 152-171 |
[101]
|
Zhu Z, Fu Y C, Woodcock C E, et al. Including Land Cover Change in Analysis of Greenness Trends Using all Available Landsat 5, 7, and 8 Images: A Case Study from Guangzhou, China (2000-2014)[J]. Remote Sensing of Environment, 2016, 185: 243-257 |
[102]
|
Zhu Z, Gallant A L, Woodcock C E, et al. Optimizing Selection of Training and Auxiliary Data for Operational Land Cover Classification for the LCMAP Initiative[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 122: 206-221 |
[103]
|
Pengra B, Gallant A, Zhu Z, et al. Evaluation of the Initial Thematic Output from a Continuous Change-Detection Algorithm for Use in Automated Operational Land-Change Mapping by the US Geological Survey[J]. Remote Sensing, 2016, 8(10): 811 |
[104]
|
Brown J F, Tollerud H J, Barber C P, et al. Lessons Learned Implementing an Operational Continuous United States National Land Change Monitoring Capability: The Land Change Monitoring, Assessment, and Projection (LCMAP) Approach[J]. Remote Sensing of Environment, 2020, 238: 111 356 |
[105]
|
Chai B H, Seto K C. Conceptualizing and Characterizing Micro-Urbanization: A New Perspective Applied to Africa[J]. Landscape and Urban Planning, 2019, 190: 103 595 |
[106]
|
Fu P, Weng Q H. A Time Series Analysis of Urbanization Induced Land Use and Land Cover Change and Its Impact on Land Surface Temperature with Landsat Imagery[J]. Remote Sensing of Environment, 2016, 175: 205-214 |
[107]
|
Sulla-Menashe D, Friedl M A, Woodcock C E. Sources of Bias and Variability in Long-Term Landsat Time Series over Canadian Boreal Forests[J]. Remote Sensing of Environment, 2016, 177: 206-219 |
[108]
|
Kussul N, Lavreniuk M, Skakun S, et al. Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5): 778-782 |
[109]
|
Cai Y P, Guan K Y, Peng J, et al. A High-Performance and In-Season Classification System of Field-Level Crop Types Using Time-Series Landsat Data and a Machine Learning Approach[J]. Remote Sensing of Environment, 2018, 210: 35-47 |
[110]
|
Srivastava S, Vargas-Muñoz J E, Tuia D. Understanding Urban Landuse from the Above and Ground Perspectives: A Deep Learning, Multimodal Solution[J]. Remote Sensing of Environment, 2019, 228: 129-143 |
[111]
|
Lyu H B, Lu H, Mou L C. Learning a Transferable Change Rule from a Recurrent Neural Network for Land Cover Change Detection[J]. Remote Sensing, 2016, 8(6): 506 |
[112]
|
Zhong L H, Hu L N, Zhou H. Deep Learning Based Multi-Temporal Crop Classification[J]. Remote Sensing of Environment, 2019, 221: 430-443 |
[113]
|
Zhang C, Sargent I, Pan X, et al. Joint Deep Learning for Land Cover and Land Use Classification[J]. Remote Sensing of Environment, 2019, 221: 173-187 |
[114]
|
Ienco D, Interdonato R, Gaetano R, et al. Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for Land Cover Mapping via a Multi-Source Deep Learning Architecture[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 158: 11-22 |
[115]
|
Wang Y D, Li Z W, Zeng C, et al. An Urban Water Extraction Method Combining Deep Learning and Google Earth Engine[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 769-782 |
[116]
|
Zhou B, Okin G S, Zhang J Z. Leveraging Google Earth Engine (GEE) and Machine Learning Algorithms to Incorporate in Situ Measurement from Di-fferent Times for Rangelands Monitoring[J]. Remote Sensing of Environment, 2020, 236: 111 521 |
[117]
|
Pinto M M, Libonati R, Trigo R M, et al. A Deep Learning Approach for Mapping and Dating Burned Areas Using Temporal Sequences of Satellite Images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 160: 260-274 |
[118]
|
Jiang H, Hu H, Zhong R H, et al. A Deep Learning Approach to Conflating Heterogeneous Geospatial Data for Corn Yield Estimation: A Case Study of the US Corn Belt at the County Level[J]. Global Change Biology, 2020, 26(3): 1 754-1 766 |
[119]
|
Li X C, Gong P, Liang L. A 30-Year (1984-2013) Record of Annual Urban Dynamics of Beijing City Derived from Landsat Data[J]. Remote Sensing of Environment, 2015, 166: 78-90 |
[120]
|
张立福, 陈浩, 孙雪剑, 等. 多维遥感数据时空谱一体化存储结构设计[J]. 遥感学报, 2017, 21(1): 62-73 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201701006.htm
Zhang Lifu, Chen Hao, Sun Xuejian, et al. Designing Spatial-Temporal-Spectral Integrated Storage Structure of Multi-Dimensional Remote Sensing Images[J]. Journal of Remote Sensing, 2017, 21(1): 62-73 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201701006.htm |
[121]
|
张立福, 孙雪剑, 张霞, 等. 时空谱多维数据格式(MDD)结构与计算机配套系统[J]. 全球变化数据学报, 2017, 1(2): 121-135 https://www.cnki.com.cn/Article/CJFDTOTAL-QQSJ201702001.htm
Zhang Lifu, Sun Xuejian, Zhang Xia, et al. Spatial Spectrum Multi-dimensional Data Format Structure and Computer Supporting System[J]. Journal of Global Change Data & Discovery, 2007, 1(2): 121-135 https://www.cnki.com.cn/Article/CJFDTOTAL-QQSJ201702001.htm |
[122]
|
李儒, 张霞, 刘波, 等. 遥感时间序列数据滤波重建算法发展综述[J]. 遥感学报, 2009, 13(2): 335-341 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200902024.htm
Li Ru, Zhang Xia, Liu Bo, et al. Review on Methods of Remote Sensing Time-Series Data Reconstruction[J]. Journal of Remote Sensing, 2009, 13(2): 335-341 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200902024.htm |
[123]
|
张霞, 李儒, 岳跃民, 等. 谐波改进的植被指数时间序列重建算法[J]. 遥感学报, 2010, 14(3): 437-447 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201003005.htm
Zhang Xia, Li Ru, Yue Yuemin, et al. Improved Algorithm for Reconstructing Vegetation Index Image Time Series based on Fourier Harmonic Analysis[J]. Journal of Remote Sensing, 2010, 14(3): 437-447 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201003005.htm |
[124]
|
Zhu X X, Tuia D, Mou L C, et al. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(4): 8-36 |
[125]
|
朱曼. 典型农作物时空谱特征分析及可分离性评价研究[D]. 北京: 中国科学院空天信息创新研究院, 2020
Zhu Man. Research on the Spatial-Temporal-Spectral Characteristics and Separability Evaluation of Typical Crops[D]. Beijing: Aerospace Information Research Institute, Chinese Academy of Sciences, 2020 |
[126]
|
张霞, 焦全军, 张兵, 等. 利用MODIS_EVI图像时间序列提取作物种植模式初探[J]. 农业工程学报, 2008, 24(5): 161-165 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200805036.htm
Zhang Xia, Jiao Quanjun, Zhang Bing, et al. Preliminary Study on Cropping Pattern Mapping Using MODIS_EVI Image Time Series[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(5): 161-165 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200805036.htm |
[127]
|
Zhang X, Sun R, Zhang B, et al. Land Cover Classification of the North China Plain Using MODIS_EVI Time Series[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2008, 63(4): 476-484 |
[128]
|
张霞, 帅通, 杨杭, 等. 基于MODIS EVI图像时间序列的冬小麦面积提取[J]. 农业工程学报, 2010, 26(S1): 220-224 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU2010S1041.htm
Zhang Xia, Shuai Tong, Yang Hang, et al. Winter Wheat Planting Area Extraction Based on MODIS EVI Image Time Series[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(S1): 220-224 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU2010S1041.htm |
[129]
|
Zhai Y G, Qu Z Y, Hao L. Land Cover Classification Using Integrated Spectral, Temporal, and Spatial Features Derived from Remotely Sensed Images[J]. Remote Sensing, 2018, 10(3): 383 |
[130]
|
Lin Y K, Zhang L F, Wang N, et al. A Change Detection Method Using Spatial-Temporal-Spectral Information from Landsat Images[J]. International Journal of Remote Sensing, 2020, 41(2): 772-793 |
[131]
|
Zeileis A. A Unified Approach to Structural Change Tests Based on ML Scores, F Statistics, and OLS Residuals[J]. Econometric Reviews, 2005, 24(4): 445-466 |