[1]
|
Zheng Y. Trajectory Data Mining:An Overview[J]. ACM Transactions on Intelligent Systems and Technology, 2015, 6(3):1-41. |
[2]
|
Cuttone A, Lehmann S, González M C. Understanding predictability and exploration in human mobility[J]. Epj Data Science, 2018, 7(1):2. |
[3]
|
Smith G, Wieser R, Goulding J, et al. A refined limit on the predictability of human mobility[C]. IEEE International Conference on Pervasive Computing & Communications(PerCom), Budapest, 2014:88-94. |
[4]
|
Song C, Qu Z, Blumm N, et al. Limits of predictability in human mobility[J]. Science, 2010, 327(5968):1018-1021. |
[5]
|
Jeung H, Liu Q, Shen H T, et al. A Hybrid Prediction Model for Moving Objects[C]. 2008 IEEE 24th International Conference on Data Engineering, Cancun, 2018:70-79. |
[6]
|
Morzy M. Mining Frequent Trajectories of Moving Objects for Location Prediction[C]. International Conference on Machine Learning & Data Mining in Pattern Recognition, Leipaig, 2007:667-680. |
[7]
|
Montoliu R, Blom J, Gatica-Perez D. Discovering places of interest in everyday life from smartphone data[J]. Multimedia Tools & Applications, 2013, 62(1):179-207. |
[8]
|
Liao D, Liu W, Zhong Y, et al. Predicting Activity and Location with Multi-task Context Aware Recurrent Neural Network[C]. Twenty-Seventh International Joint Conference on Artificial Intelligence IJCAI-18, Stockholm, 2018:3435-3441. |
[9]
|
Liu L, Zhang S, Zhou W. Mobility Predictability of College Students via Full Lifecycle Campus Consuming Logs[C]. 2018 IEEE International Conference on Communications (ICC 2018), Kansas City, 2018:1-6. |
[10]
|
Liu Q, Wu S, Wang L, et al. Predicting the Next Location:A Recurrent Model with Spatial and Temporal Contexts[C]. Thirtieth Aaai Conference on Artificial Intelligence, Phoenix, 2016:194-200. |
[11]
|
Alahi A, Goel K, Ramanathan V, et al. Social LSTM:Human Trajectory Prediction in Crowded Spaces[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 2016:961-971. |
[12]
|
Altche F, Fortelle A D L. An LSTM network for highway trajectory prediction[C]. 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, 2017:353-359. |
[13]
|
Ashbrook D, Starner T. Using GPS to learn significant locations and predict movement across multiple users[J]. Personal and Ubiquitous computing, 2003, 7(5):275-286. |
[14]
|
Gambs S, Killijian M-O, Del Prado Cortez M N. Next place prediction using mobility markov chains[C]. Proceedings of the First Workshop on Measurement, Privacy, and Mobility:Association for Computing Machinery, Bern, 2012:1-6. |
[15]
|
Mathew W, Raposo R, Martins B. Predicting future locations with hidden Markov models[C]. ACM Conference on Ubiquitous Computing, Pittsburgh, 20 Predicting next location using a variabl 12:911-918. |
[16]
|
Sun S,Zhao J,Gao Q. Modeling and Recognizing Human Trajectories with Beta Process Hidden Markov Models[J]. Pattern Recogn, 2015, 48(8):2407-2417. |
[17]
|
Yang J, Xu J, Xu M, et al. Predicting next location using a variable order Markov model[C]. Acm Sigspatial International Workshop on Geostreaming, Dallas, 2014:37-42. |
[18]
|
Begleiter R, El-Yaniv R, Yona G. On Prediction Using Variable Order Markov Models[J]. Journal of Artificial Intelligence Research, Pittsburgh, 2004:911-918. |
[19]
|
Li F, Li Q, Li Z, et al. A Personal Location Prediction Method to Solve the Problem of Sparse Trajectory Data[C]. 2019 20th IEEE International Conference on Mobile Data Management (MDM), Hong Kong, 2019:329-336. |
[20]
|
Li F, Gui Z, Zhang Z, et al. A hierarchical temporal attention-based LSTM encoder-decoder model for individual mobility prediction[J]. Neurocomputing, 2020, 403:153-166. |
[21]
|
Dai Y. A Collaborative Filtering Recommendation Algorithm Based on Time Weight[J]. Advanced Materials Research, 2010, 159(1):667-670. |
[22]
|
Gao Z, Lu Z, Deng N, et al. A novel collaborative filtering recommendation algorithm based on user location[C]. 2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), Nantou, 2016:1-2. |
[23]
|
A D K H, B P V, C R G. Wavelets on graphs via spectral graph theory[J]. Applied and Computational Harmonic Analysis, 2011, 30(2):129-150. |
[24]
|
Geng X, Li Y, Wang L, et al. Spatiotemporal Multi-Graph Convolution Network for Ride-Hailing Demand Forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33:3656-3663. |
[25]
|
Jia T, Yan P. Predicting Citywide Road Traffic Flow Using Deep Spatiotemporal Neural Networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2020. |
[26]
|
Defferrard M,Bresson X,Vandergheynst P. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering[C].Proceedings of the 30th International Conference on Neural Information Processing Systems:Curran Associates Inc., Barcelona, 2016:3844-3852. |
[27]
|
Zhao L, Song Y, Zhang C, et al. T-GCN:A Temporal Graph Convolutional Network for Traffic Prediction[J]. IEEE Transactions on Intelligent Transportation Systems,21(9):3848-3858. |
[28]
|
Bruna J,Zaremba W,Szlam A, et al. Spectral Networks and Locally Connected Networks on Graphs[J]. Paper presented at 2nd International Conference on Learning Representations, ICLR 2014, Banff, Canada, 2014. |
[29]
|
Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural computation, 1997, 9(8):1735-1780. |
[30]
|
Zhao Z, Shaw S-L, Yin L, et al. The effect of temporal sampling intervals on typical human mobility indicators obtained from mobile phone location data[J]. International Journal of Geographical Information Science, 2019, 33(7):1471-1495. |
[31]
|
Yuan F, Xia G S, Sahbi H, et al. Mid-level features and spatio-temporal context for activity recognition[J]. Pattern Recognition, 2012, 45(12):4182-4191. |