[1]
|
Hackel T, Wegner J D, Schindler K. Fast Semantic Segmentation of 3D Point Clouds With Strongly Varying Density[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 3(3):177-184 |
[2]
|
Castillo E, Liang J, Zhao H. Point Cloud Segmentation and Denoising Via Constrained Nonlinear Least Squares Normal Estimates[M]. Innovations for Shape Analysis. Springer, Berlin, Heidelberg, 2013 |
[3]
|
Vo A V, Truong-Hong L, Laefer D F, et al. Octree-Based Region Growing for Point Cloud Segmentation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 104(7):88-100 |
[4]
|
Andres M, Ignacio V, Jens B, et al. RangeNet++:Fast and Accurate Lidar Semantic Segmentation[C]. IEEE International Conference on Intelligent Robots and Systems, Macau, China, 2019 |
[5]
|
Maturana, Daniel, Sebastian Scherer. Voxnet:A 3d Convolutional Neural Network for Real-time Object Recognition[C]. IEEE International Conference on Intelligent Robots and Systems, Hamburg, Germany, 2015 |
[6]
|
Qi C, Su H, Mo K, et al. PointNet:Deep Learning on Point Sets for 3d Classification and Segmentation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017 |
[7]
|
Qi C, Yi L, Su H, et al. PointNet++:Deep Hierarchical Feature Learning on Point Sets in a Metric Space[C]. Advances in Neural Information Processing Systems, Long Beach, CA, USA, 2017 |
[8]
|
Yu, Fisher, and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions[C]. International Conference on Learning Representations, San Juan, Puerto Rico, 2016 |
[9]
|
Jiang M, Wu Y, Zhao T, et al. Pointsift:a Sift-like Network Module for 3D Point Cloud Semantic Segmentation[J]. Arxiv Preprint, ArXiv:1807.00652, 2018 |
[10]
|
Li Y, Bu R, Sun M, et al. Pointcnn:Convolution on X-Transformed Points[C]. Advances in Neural Information Processing Systems, Montréal, Canada, 2018 |
[11]
|
Liang Z, Yang M, Li H, et al. 3D Instance Embedding Learning With a Structure-Aware Loss Function for Point Cloud Segmentation[J]. IEEE Robotics and Automation Letters, 2020, 5(3):4915-4922 |
[12]
|
Ronneberger O, Fischer P, Brox T. U-Net:Convolutional Networks for Biomedical Image Segmentation[C]. International Conference on Medical image computing and computer-assisted intervention, Munich, Germany, 2015 |
[13]
|
Zhao H, Jiang L, Fu C. PointWeb:Enhancing local neighborhood features for point cloud processing[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 2019 |
[14]
|
Thomas H, Qi C, Deschaud J, et al. Kpconv:Flexible and Deformable Convolution for Point Clouds[C]. Proceedings of the IEEE International Conference on Computer Vision, Seoul, South Korea, 2019 |
[15]
|
Hackel T, Savinov N, Ladicky L, et al. Semantic3D Net:a New Large-scale Point Cloud Classification Benchmark[C]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, (IV-1)W1:91-98 |
[16]
|
Wang F, Zhuang Y, Gu H, et al. OctreeNet. A Novel Sparse 3-D Convolutional Neural Network for Real-Time 3-D Outdoor Scene Analysis[J]. IEEE Transactions on Automation Science and Engineering, 2019, 17(2):735-747 |
[17]
|
Contreras J, Joachim D. Edge-Convolution Point Net for Semantic Segmentation of Large-Scale Point Clouds[C]. IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019 |
[18]
|
Thomas H, Goulette F, Deschaud J, et al. Semantic Classification of 3D Point Clouds with Multiscale Spherical Neighborhoods[C]. International Conference on 3D Vision, Verona, Italy, 2018 |
[19]
|
Roynard X, Deschaud J, Goulett F. Classification of Point Cloud Scenes with Multiscale Voxel Deep Network[J]. ArXiv Preprint, ArXiv:1804.03583, 2018 |