留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向对象分类的企鹅种群无人机影像识别方法研究

彭楚粤 程晓 夏林元

彭楚粤, 程晓, 夏林元. 面向对象分类的企鹅种群无人机影像识别方法研究[J]. 武汉大学学报 ● 信息科学版. doi: 10.13203/j.whugis20200557
引用本文: 彭楚粤, 程晓, 夏林元. 面向对象分类的企鹅种群无人机影像识别方法研究[J]. 武汉大学学报 ● 信息科学版. doi: 10.13203/j.whugis20200557
Peng Chuyue, Cheng Xiao, Xia Linyuan. Study on Recognizing the Penguin Population in UAV Image Based on Object Otiented Classification[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20200557
Citation: Peng Chuyue, Cheng Xiao, Xia Linyuan. Study on Recognizing the Penguin Population in UAV Image Based on Object Otiented Classification[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20200557

面向对象分类的企鹅种群无人机影像识别方法研究

doi: 10.13203/j.whugis20200557
基金项目: 

国家自然科学基金(41925027)。

详细信息
    作者简介:

    彭楚粤,硕士,主要从事极地遥感方面的研究。pengchy5@mail2.sysu.edu.cn

  • 中图分类号: P237

Study on Recognizing the Penguin Population in UAV Image Based on Object Otiented Classification

Funds: 

The national Natural Science Foundation of China (41925027).

  • 摘要: 企鹅是南极的代表性生物,监测企鹅的数量及分布对研究南极环境变化有重大意义。以往研究大多基于中高分辨率影像进行企鹅识别,识别精度难以进一步提高,且已有的企鹅种群的时间序列分析都是基于间接识别方法,因此发展基于高分辨率遥感影像的企鹅数量精确识别就显得尤为重要。本研究选取东南极企鹅岛为研究对象,中国南极科学考察队利用遥感无人机分别于2017年1月、2018年1月和2019年12月对该区域进行航拍观测,获得了厘米级的高分辨率影像。基于面向对象分类法,分别提取了三幅影像的企鹅阴影像元,计算得到企鹅数量,并标记了企鹅栖息地。总体精度达到91%。实验结果显示了企鹅种群动态变化,其中企鹅栖息地分布较固定,但数量出现波动,三幅影像中分别为1068对、1003对和1081对。
  • [1] Lynch H J, LaRue M A. First Global Census of the Adélie Penguin[J]. The Auk, 2014, 131(4):457-466
    [2] Taylor R, Wilson P. Recent Increase and Southern Expansion of Adélie Penguin Populations in the Ross Sea, Antarctica, Related to Climatic Warming[J]. New Zealand Journal of Ecology, 1990, 14:25-29
    [3] Turner J, Barrand N E, Bracegirdle T J, et al. Antarctic Climate Change and the Environment:an Update[J]. Polar Record, 2014, 50(3):237-259
    [4] Turner J, Bindschadler R, Convey P, et al. Antarctic Climate Change and the Environment:A contribution to the International Polar Year 2007-2008[J]. Scientific Committee on Antarctic Research Scott Polar Research Institute, 2009, 83(11):49-50
    [5] Böning C W, Dispert A, Visbeck M, et al. The Response of the Antarctic Circumpolar Current to Recent Climate Change[J]. Nature Geoscience, 2008, 1(12):864-869
    [6] Bracegirdle T J, Connolley W M, Turner J. Antarctic Climate Change over the Twenty First Century[J]. Journal of Geophysical Research, 2008, 113(D3):D03103
    [7] Stammerjohn S, Massom R, Rind D, et al. Regions of Rapid Sea Ice Change:an Inter-hemispheric Seasonal Comparison[J]. Geophysical Research Letters, 2012, 39(6):L06501
    [8] Turner J, Marshall G J, Clem K, et al. Antarctic temperature variability and change from station data[J]. International Journal of Climatology, 2020, 40(6):2986-3007.
    [9] Dias M P, Warwick-evans V, Carneiro A P B, et al. Using habitat models to identify marine important bird and biodiversity areas for Chinstrap Penguins Pygoscelis antarcticus in the South Orkney Islands[J]. Polar Biology, 2019, 42(1):17-25.
    [10] Trivelpiece W Z, Hinke J T, Miller A K, et al. Variability in Krill Biomass Links Harvesting and Climate Warming to Penguin Population Changes in Antarctica[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(18):7625-7628
    [11] Sailley S F, Ducklow H W, Moeller H V, et al. Carbon Fluxes and Pelagic Ecosystem Dynamics near two Western Antarctic Peninsula Adélie Penguin Colonies:an Inverse Model Approach[J]. Marine Ecology Progress Series, 2013, 492:253-272
    [12] Lynch H, Naveen R, Trathan P, et al. Spatially Integrated Assessment Reveals Widespread Changes in Penguin Populations on the Antarctic Peninsula[J]. Ecology, 2012, 93:1367-1377
    [13] Ainley D G, Clarke E D, Arrigo K, et al. Decadal-scale Changes in the Climate and Biota of the Pacific Sector of the Southern Ocean, 1950s to the 1990s[J]. Antarctic Science, 2005, 17(2):171-182
    [14] Ainley D, Russell J, Jenouvrier S, et al. Antarctic Penguin Response to Habitat Change as Earth's Troposphere Reaches 2℃ Above Preindustrial Levels[J]. Ecological Monographs, 2010, 80(1):49-66
    [15] Chen X, Cheng X, Zhang B, et al. Lagged response of Adélie penguin (Pygoscelis adeliae) abundance to environmental variability in the Ross Sea, Antarctica[J]. Polar Biology, 2020, 43(11):1769-81.
    [16] LaRue M A, Lynch H J, Lyver P O B, et al. A Method for Estimating Colony Sizes of Adélie Penguins Using Remote Sensing Imagery[J]. Polar Biol, 2014, 37(4):507-517
    [17] Schwaller M R, Benninghoff W S, Olson C E. Prospects for Satellite Remote Sensing of Adelie Penguin Rookeries[J]. Remote Sensing Letters, 1984, 5(5):849-853
    [18] Schwaller M R, Olson C E, Ma Z Q, et al. A Remote Sensing Analysis of Adélie Penguin Rookeries[J]. Remote Sensing of Environment, 1989, 28(2):199-206
    [19] Fretwell P T, LaRue M A, Morin P, et al. An Emperor Penguin Population Estimate:The First Global, Synoptic Survey of a Species from Space[J]. PLOS ONE, 2012, 7(4):e33751
    [20] Woehler E J, Riddle M J. Spatial Relationships of Adélie Penguin Colonies:Implications for Assessing Population Changes from Remote Imagery[J]. Antarctic Science, 1998, 10(04):449-454
    [21] Heather J, LynchH, Mathew R, et al. Mapping the Abundance and Distribution of Adélie Penguins Using Landsat-7:First Steps Towards an Integrated Multi-sensor Pipeline for Tracking Populations at the Continental Scale[J]. PLOS ONE, 2014, 9(11):e113301
    [22] Schwaller M R, Southwell C J, Emmerson L M. Continental-scale Mapping of Adélie Penguin Colonies from Landsat Imagery[J]. Remote Sensing of Environment, 2013, 139:353-364
    [23] Mustafa O, Pfeifer C, Peter H U, et al. Pilot Study on Monitoring Climate-induced Changes in Penguin Colonies in the Antarctic Using Satellite Images[M]. 2012
    [24] LaRue M A, Ainley D G, Swanson M, et al. Climate Change Winners:Receding Ice Fields Facilitate Colony Expansion and Altered Dynamics in an Adélie Penguin Metapopulation[J]. PLOS ONE, 2013, 8(4):e60568
    [25] Witharana C, LaRue M A, Lynch H J, et al. Benchmarking of Data Fusion Algorithms in Support of Earth Observation Based Antarctic Wildlife Monitoring[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 113:124-143
    [26] Korczak-abshire M, Zmarz A, Rodzewicz M, et al. Study of fauna population changes on Penguin Island and Turret Point Oasis (King George Island, Antarctica) using an unmanned aerial vehicle[J]. Polar Biology, 2019, 42(1):217-24.
    [27] Oosthuizen W C, Krüger L, Jouanneau W, et al. Unmanned aerial vehicle (UAV) survey of the Antarctic shag (Leucocarbo bransfieldensis) breeding colony at Harmony Point, Nelson Island, South Shetland Islands[J]. Polar Biology, 2020, 43(2):187-91.
    [28] Norton-Griffiths M. Reducing counting Bias in Aerial Censuses by Photography*[J]. African Journal of Ecology, 2010, 12(3):245-248
    [29] Lowry M. Counts of California Sea Lion (Zalophus Californianus) Pups from Aerial Color Photographs and from the Ground:a Comparison of Two Methods[J]. Marine Mammal Science, 2010, 15(1):143-158
    [30] Bird C N, Dawn A H, Dale J, et al. A Semi-Automated Method for Estimating Adélie Penguin Colony Abundance from a Fusion of Multispectral and Thermal Imagery Collected with Unoccupied Aircraft Systems[J]. Remote Sensing, 2020, 12(22):3692.
    [31] He H, Cheng X, Li X, et al. Aerial Photography Based Census of Adélie Penguin and its Application in CH4 and N2O Budget Estimation in Victoria Land, Antarctic[J]. Scientific Reports, 2017, 7(1):12942
    [32] Małgorzata K A, Anna Z, Mirosław R, et al. Study of Fauna Population Changes on Penguin Island and Turret Point Oasis (King George Island, Antarctica) Using an Unmanned Aerial Vehicle[J]. Polar Biology, 2019, 42:217-224
    [33] Che-Castaldo C, Jenouvrier S, Youngflesh C, et al. Pan-Antarctic Analysis Aggregating Spatial Estimates of Adélie Penguin Abundance Reveals Robust Dynamics Despite Stochastic Noise[J]. Nature Communication, 2017, 8(1):832
  • [1] 李腾, 张宝钢, 程晓, 张媛媛, 惠凤鸣, 赵天成, 秦为稼, 梁建宏, 杨元德, 刘旭颖, 李新情.  无人机在南极科学研究的应用:进展与展望 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20200098
    [2] 崔溦, 谢恩发, 张贵科, 李宏璧.  利用无人机技术的高陡边坡孤立危岩体识别 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20190186
    [3] 宋志娜, 眭海刚, 李永成.  高分辨率可见光遥感图像舰船目标检测综述 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20200481
    [4] 李维炼, 朱军, 朱秀丽, 付林, 张昀昊, 胡亚, 何秋玲, 黄鹏诚.  无人机遥感数据支持下滑坡VR场景探索分析方法 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20190047
    [5] 姜三, 许志海, 张峰, 廖如超, 江万寿.  面向无人机倾斜影像的高效SfM重建方案 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20180030
    [6] 樊邦奎, 张瑞雨.  无人机系统与人工智能 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20170177
    [7] 眭海刚, 华凤, 范一大, 刘俊怡.  利用GIS与贝叶斯网络进行高分辨率SAR影像道路损毁信息提取 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20140323
    [8] 冯文卿, 张永军.  利用模糊综合评判进行面向对象的遥感影像变化检测 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20140291
    [9] 徐亚明, 石娟, 安动动, 马旭东.  利用影像分割和匹配特征进行无人机影像变化检测 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20140873
    [10] 占伟伟, 王伟, 陈能成, 王超.  一种利用改进A*算法的无人机航迹规划 . 武汉大学学报 ● 信息科学版,
    [11] 杨红卫, 童小华.  高分辨率影像的橡胶林分布信息提取 . 武汉大学学报 ● 信息科学版, doi: 10.13203/j.whugis20121134
    [12] 余 洁, 刘振宇, 燕 琴, 朱 腾.  多尺度下的半自动面向对象SAR影像分类 . 武汉大学学报 ● 信息科学版,
    [13] 朱庆, 于杰, 杜志强, 张叶廷.  面向对象的真正射影像纠正方法 . 武汉大学学报 ● 信息科学版,
    [14] 鄂栋臣, 张辛, 王泽民, 周春霞.  利用卫星影像进行南极格罗夫山蓝冰变化监测 . 武汉大学学报 ● 信息科学版,
    [15] 孙开敏, 李德仁, 眭海刚.  基于多尺度分割的对象级影像平滑算法 . 武汉大学学报 ● 信息科学版,
    [16] 管海燕, 邓非, 张剑清, 钟良.  面向对象的航空影像与LiDAR数据融合分类 . 武汉大学学报 ● 信息科学版,
    [17] 薄树奎, 韩新超, 丁琳.  面向对象影像分类中分割参数的选择 . 武汉大学学报 ● 信息科学版,
    [18] 沈强, 鄂栋臣.  基于辐射传输模型的南极中山站影像大气校正 . 武汉大学学报 ● 信息科学版,
    [19] 陈云浩, 冯通, 史培军, 王今飞.  基于面向对象和规则的遥感影像分类研究 . 武汉大学学报 ● 信息科学版,
    [20] 史文中, 曹辉, 张剑清.  基于高分辨率影像的城市三维建模 . 武汉大学学报 ● 信息科学版,
  • 加载中
计量
  • 文章访问数:  566
  • HTML全文浏览量:  77
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-17
  • 网络出版日期:  2021-05-07

面向对象分类的企鹅种群无人机影像识别方法研究

doi: 10.13203/j.whugis20200557
    基金项目:

    国家自然科学基金(41925027)。

    作者简介:

    彭楚粤,硕士,主要从事极地遥感方面的研究。pengchy5@mail2.sysu.edu.cn

  • 中图分类号: P237

摘要: 企鹅是南极的代表性生物,监测企鹅的数量及分布对研究南极环境变化有重大意义。以往研究大多基于中高分辨率影像进行企鹅识别,识别精度难以进一步提高,且已有的企鹅种群的时间序列分析都是基于间接识别方法,因此发展基于高分辨率遥感影像的企鹅数量精确识别就显得尤为重要。本研究选取东南极企鹅岛为研究对象,中国南极科学考察队利用遥感无人机分别于2017年1月、2018年1月和2019年12月对该区域进行航拍观测,获得了厘米级的高分辨率影像。基于面向对象分类法,分别提取了三幅影像的企鹅阴影像元,计算得到企鹅数量,并标记了企鹅栖息地。总体精度达到91%。实验结果显示了企鹅种群动态变化,其中企鹅栖息地分布较固定,但数量出现波动,三幅影像中分别为1068对、1003对和1081对。

English Abstract

彭楚粤, 程晓, 夏林元. 面向对象分类的企鹅种群无人机影像识别方法研究[J]. 武汉大学学报 ● 信息科学版. doi: 10.13203/j.whugis20200557
引用本文: 彭楚粤, 程晓, 夏林元. 面向对象分类的企鹅种群无人机影像识别方法研究[J]. 武汉大学学报 ● 信息科学版. doi: 10.13203/j.whugis20200557
Peng Chuyue, Cheng Xiao, Xia Linyuan. Study on Recognizing the Penguin Population in UAV Image Based on Object Otiented Classification[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20200557
Citation: Peng Chuyue, Cheng Xiao, Xia Linyuan. Study on Recognizing the Penguin Population in UAV Image Based on Object Otiented Classification[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20200557
参考文献 (33)

目录

    /

    返回文章
    返回