留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

遥感技术在不透水层提取中的应用与展望

李德仁 罗晖 邵振峰

李德仁, 罗晖, 邵振峰. 遥感技术在不透水层提取中的应用与展望[J]. 武汉大学学报 ● 信息科学版, 2016, 41(5): 569-577,703. doi: 10.13203/j.whugis20160038
引用本文: 李德仁, 罗晖, 邵振峰. 遥感技术在不透水层提取中的应用与展望[J]. 武汉大学学报 ● 信息科学版, 2016, 41(5): 569-577,703. doi: 10.13203/j.whugis20160038
LI Deren, LUO Hui, SHAO Zhenfeng. Review of Impervious Surface Mapping Using Remote Sensing Technology and Its Application[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 569-577,703. doi: 10.13203/j.whugis20160038
Citation: LI Deren, LUO Hui, SHAO Zhenfeng. Review of Impervious Surface Mapping Using Remote Sensing Technology and Its Application[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 569-577,703. doi: 10.13203/j.whugis20160038

遥感技术在不透水层提取中的应用与展望

doi: 10.13203/j.whugis20160038
基金项目: 国家重大设备专项项目(2012YQ16018505);国家科技支撑计划(2013BAH42F03);国家教育部新世纪优秀人才资助计划(NCET-12-0426);武汉大学创新人才项目(2042014kf0212);地理国情监测专项基金。
详细信息
    作者简介:

    李德仁,教授,博士生导师,中国科学院院士,中国工程院院士,国际欧亚科学院院士,现从事以遥感、全球卫星定位系统和地理信息系统为代表的空间信息科学与技术的科研与教学工作,推进地理国情监测、数字城市与数字中国、智慧城市与智慧中国的研究及相关建设。drli@whu.edu.cn

    通讯作者: 罗晖,博士生。luohui_lh@whu.edu.cn
  • 中图分类号: P237.9

Review of Impervious Surface Mapping Using Remote Sensing Technology and Its Application

Funds: The National Key Scientific Instrument and Equipment Development, No.2012YQ16018505; the Key Technologies Research and Development Program of China, No.2013BAH42F03; New Century Excellent Talents in University, No.NCET-12-0426; Innovative Project of Wuhan University, No.2042014kf0212; Scientific Fund of Geographic National Conditions Monitoring.
  • 摘要: 地理国情监测是我国测绘工作在新时代的主要任务和发展方向。不透水层分布是城市和区域环境的生态考核指标之一,对城市和区域的发展规划和生态评估具有重要意义。但是,目前我国地理国情普查和监测工作中依然缺少对不透水层分布的调查和统计。基于遥感技术的不透水层提取具有实时、快速、精确的特点,本文首先针对不同遥感影像的数据特点和优势介绍了不透水层提取的经典理论,然后对现有的不透水层应用方向进行了总结,主要包括水文、城市热岛效应、土地利用及变化、城市生态环境监测以及城市规划,最后展望其在相关行业中的潜在应用,并建议将不透水层分布列为我国地理国情调查和监测的内容。
  • [1] The First National Geographic Census Leading Group Office of the State Council. The Contents and Standards for National Geographic Census[EB/OL]. http://hainan.sbsm.gov.cn/accessory/Oct24,2013115311AM.pdf, 2013(国务院第一次全国地理国情普查领导小组办公室. 地理国情普查内容与指标[EB/OL]. http://hainan.sbsm.gov.cn/accessory/Oct24,2013115311AM.pdf, 2013)
    [2] Jr Arnold C L, Gibbons C J. Impervious Surface Coverage:The Emergence of a Key Environmental Indicator[J]. Journal of the American Planning Association, 1996, 62(2):243-258
    [3] Weng Q. Remote Sensing of Impervious Surfaces in the Urban Areas:Requirements, Methods, and Trends[J]. Remote Sensing of Environment, 2012, 117:34-49
    [4] Hurd J D, Civco D L. Temporal Characterization of Impervious Surfaces for the State of Connecticut[C]. The ASPRS Annual Conference, Denver, Colorado, 2004
    [5] Harbor J M. A Practical Method for Estimating the Impact of Land-Use Change on Surface Runoff, Groundwater Recharge and Wetland Hydrology[J]. Journal of the American Planning Association, 1994, 60(1):95-108
    [6] Yuan F, Bauer M E. Comparison of Impervious Surface Area and Normalized Difference Vegetation Index as Indicators of Surface Urban Heat Island Effects in Landsat Imagery[J]. Remote Sensing of Environment, 2007, 106(3):375-386
    [7] Schueler T R. The Importance of Imperviousness[J]. Watershed Protection Techniques, 1994, 1(3):100-111
    [8] Xian G, Homer C. Updating the 2001 National Land Cover Database Impervious Surface Products to 2006 Using Landsat Imagery Change Detection Methods[J]. Remote Sensing of Environment, 2010, 114(8):1676-1686
    [9] Homer C H, Fry J A, Barnes C A. The National Land Cover Database[J]. US Geological Survey Fact Sheet, 2012, 3020(4):1-4
    [10] Wickham J D, Stehman S V, Gass L, et al. Accuracy Assessment of NLCD 2006 Land Cover and Impervious Surface[J]. Remote Sensing of Environment, 2013, 130:294-304
    [11] Yang L, Huang C, Homer C G, et al. An Approach for Mapping Large-Area Impervious Surfaces:Synergistic Use of Landsat-7 ETM+ and High Spatial Resolution Imagery[J]. Canadian Journal of Remote Sensing, 2003, 29(2):230-240
    [12] Xian G, Homer C, Dewitz J, et al. Change of Impervious Surface Area Between 2001 and 2006 in the Conterminous United States[J]. Photogrammetric Engineering and Remote Sensing, 2011, 77(8):758-762
    [13] Yang L, Xian G, Klaver J M, et al. Urban Land-Cover Change Detection Through Sub-pixel Imperviousness Mapping Using Remotely Sensed Data[J]. Photogrammetric Engineering & Remote Sensing, 2003, 69(9):1003-1010
    [14] Esch T, Himmler V, Schorcht G, et al. Large-Area Assessment of Impervious Surface Based on Integrated Analysis of Single-Date Landsat-7 Images and Geospatial Vector Data[J]. Remote Sensing of Environment, 2009, 113(8):1678-1690
    [15] Carlson T N, Arthur S T. The Impact of Land Use:Land Cover Changes Due to Urbanization on Surface Microclimate and Hydrology:A Satellite Perspective[J]. Global and Planetary Change, 2000, 25(1/2):49-65
    [16] Shao Z, Liu C. The Integrated Use of DMSP-OLS Nighttime Light and MODIS Data for Monitoring Large-Scale Impervious Surface Dynamics:A Case Study in the Yangtze River Delta[J]. Remote Sensing, 2014, 6(10):9359-9378
    [17] Lu D, Tian H, Zhou G, et al. Regional Mapping of Human Settlements in Southeastern China with Multisensor Remotely Sensed Data[J]. Remote Sensing of Environment, 2008, 112(9):3668-3679
    [18] Liao Mingsheng, Jiang Liming, Lin Hui, et al. Estimating Urban Impervious Surface Percent Using Boosting as a Refinement of CART Analysis[J]. Geomatics and Information Science of Wuhan University, 2007, 32(12):1099-1102(廖明生, 江利明, 林珲, 等. 基于CART集成学习的城市不透水层百分比遥感估算[J]. 武汉大学学报·信息科学版, 2007, 32(12):1099-1102)
    [19] Mallick J, Rahman A, Singh C K. Modeling Urban Heat Islands in Heterogeneous Land Surface and its Correlation with Impervious Surface Area by Using Night-Time ASTER Satellite Data in Highly Urbanizing City, Delhi-India[J]. Advances in Space Research, 2013, 52(4):639-655
    [20] Jiang Liming, Liao Mingsheng, Lin Hui, et al. Estimating Urban Impervious Surface Percentage with ERS-1/2 InSAR Data[J]. Journal of Remote Sensing, 2008, 12(1):176-185(江利明, 廖明生, 林珲,等. 利用雷达干涉数据进行城市不透水层百分比估算[J]. 遥感学报, 2008, 12(1):176-185)
    [21] Zhang Y Z, Zhang H S, Lin H. Improving the Impervious Surface Estimation with Combined Use of Optical and SAR Remote Sensing Images[J]. Remote Sensing of Environment, 2014, 141:155-167
    [22] Flanagan M, Civco D L. Subpixel Impervious Surface Mapping[C].The ASPRS Annual Convention, St. Louis, Missouri, USA, 2001
    [23] Ridd M K. Exploring a VIS (Vegetation-Impervious Surface-Soil) Model for Urban Ecosystem Analysis through Remote Sensing:Comparative Anatomy for Cities[J]. International Journal of Remote Sensing, 1995, 16(12):2165-2185
    [24] Phinn S, Stanford M, Scarth P, et al. Monitoring the Composition of Urban Environments Based on the Vegetation-Impervious Surface-Soil (VIS) Model by Subpixel Analysis Techniques[J]. International Journal of Remote Sensing, 2002, 23(20):4131-4153
    [25] Wu C. Normalized Spectral Mixture Analysis for Monitoring Urban Composition Using ETM+ Imagery[J]. Remote Sensing of Environment, 2004, 93(4):480-492
    [26] Wu C, Murray A T. Estimating Impervious Surface Distribution by Spectral Mixture Analysis[J]. Remote Sensing of Environment, 2003, 84(4):493-505
    [27] Xia Junshi, Du Peijun, Fen Yunfeng, et al. Urban Impervious Surface Area Extraction and Analysis Based on Hyperspectral Remote Sensing Image[J]. Journal of China University of Mining & Technology, 2011, 40(4):660-666(夏俊士, 杜培军, 逢云峰,等. 基于高光谱数据的城市不透水层提取与分析[J]. 中国矿业大学学报, 2011, 40(4):660-666)
    [28] Pu R, Gong P, Michishita R, et al. Spectral Mixture Analysis for Mapping Abundance of Urban Surface Components from the Terra/ASTER Data[J]. Remote Sensing of Environment, 2008, 112(3):939-954
    [29] Lu D S, Li G Y, Kuang W H, et al. Methods to Extract Impervious Surface Areas from Satellite Images[J]. International Journal of Digital Earth, 2014, 7(2):93-112
    [30] Xian G, Crane M. Assessments of Urban Growth in the Tampa Bay Watershed Using Remote Sensing Data[J]. Remote Sensing of Environment, 2005, 97(2):203-215
    [31] Elvidge C, Tuttle B, Sutton P, et al. Global Distribution and Density of Constructed Impervious Surfaces[J]. Sensors, 2007, 7(9):1962-1979
    [32] Hu X, Weng Q. E Estimating Impervious Surfaces from Medium Spatial Resolution Imagery Using the Self-organizing Map and Multi-layer Perceptron Neural Networks[J]. Remote Sensing of Environment, 2009, 113(10):2089-2102
    [33] Xu H. A New Remote Sensing Index for Fastly Extracting Impervious Surface Information[J]. Geomatics and Information Science of Wuhan University. 2008, 33(11):1150-1153(徐涵秋. 一种快速提取不透水面的新型遥感指数[J]. 武汉大学学报·信息科学版, 2008, 33(11):1150-1153)
    [34] Deng C, Wu C. BCI:A Biophysical Composition Index for Remote Sensing of Urban Environments[J]. Remote Sensing of Environment, 2012, 127:247-259
    [35] Liu C, Shao Z, Chen M, et al. MNDISI:A Multi-source Composition Index for Impervious Surface Area Estimation at the Individual City Scale[J]. Remote Sensing Letters, 2013, 4(8):803-812
    [36] Moran E F. Land Cover Classification in a Complex Urban-Rural Landscape with Quickbird Imagery[J]. Photogrammetric Engineering & Remote Sensing, 2010, 76(10):1159-1168
    [37] Luo H, Wang L, Shao Z, et al. Development of a Multi-scale Object-Based Shadow Detection Method for High Spatial Resolution Image[J]. Remote Sensing Letters, 2015, 6(1):59-68
    [38] Wu C. Quantifying High-Resolution Impervious Surfaces Using Spectral Mixture Analysis[J]. International Journal of Remote Sensing, 2009, 30(11):2915-2932
    [39] Sawaya K E, Olmanson L G, Heinert N J, et al. Extending Satellite Remote Sensing to Local Scales:Land and Water Resource Monitoring Using High-resolution Imagery[J]. Remote Sensing of Environment, 2003, 88(1/2):144-156
    [40] Goetz S J, Wright R K, Smith A J, et al. IKONOS Imagery for Resource Management:Tree Cover, Impervious Surfaces, and Riparian Buffer Analyses in the Mid-Atlantic Region[J]. Remote Sensing of Environment, 2003, 88(1/2):195-208
    [41] Yuan F, Bauer M E. Mapping Impervious Surface Area Using High Resolution Imagery:A Comparison of Object-Based and per Pixel Classification[C]. The ASPRS 2006 Annual Conference, Reno, Nevada, 2006
    [42] Zhou Y, Wang Y Q. Extraction of Impervious Surface Areas from High Spatial Resolution Imagery by Multiple Agent Segmentation and Classification[J]. Photogrammetric Engineering & Remote Sensing, 2008, 74(7):857-868
    [43] Mohapatra R P, Wu C. High Resolution Impervious Surface Estimation[J]. Photogrammetric Engineering & Remote Sensing, 2010, 76(12):1329-1341
    [44] Zhou W, Huang G, Troy A, et al. Object-Based Land Cover Classification of Shaded Areas in High Spatial Resolution Imagery of Urban Areas:A Comparison Study[J]. Remote Sensing of Environment, 2009, 113(8):1769-1777
    [45] Jacobson C R. Identification and Quantification of the Hydrological Impacts of Imperviousness in Urban Catchments:A Review[J]. Journal of Environmental Management, 2011, 92(6):1438-1448
    [46] Leopold L B. Hydrology for Urban Land Planning:A Guidebook on the Hydrologic Effects of Urban Land Use[R]. US Government Printing Office, USA,1968
    [47] Sheeder S A, Ross J D, Carlson T N. Dual Urban and Rural Hydrograph Signals in Three Small Watersheds[J]. Jawra Journal of the American Water Resources Association, 2007, 38(4):1027-1040
    [48] Yang G, Bowling L C, Cherkauer K A, et al. Hydroclimatic Response of Watersheds to Urban Intensity:An Observational and Modeling-Based Analysis for the White River Basin, Indiana[J]. Journal of Hydrometeorology, 2010, 11(1):122-138
    [49] Brun S, Band L. Simulating Runoff Behavior in an Urbanizing Watershed[J]. Computers, Environment and Urban Systems, 2000, 24(1):5-22
    [50] Zhang Yan, Bao Wenjie, Yu Qi, et al. Study on Seasonal Variations of the Urban Heat Island and Its Inter-annual Differences in a Typical Megacity[J]. Journal of Earth Science, 2012, 55(4):1121-1128(张艳, 鲍文杰, 余琦, 等. 超大城市热岛效应的季节变化特征及其年际差异[J]. 地球物理学报, 2012, 55(4):1121-1128)
    [51] Slonecker E T, Jennings D B, Garofalo D. Remote Sensing of Impervious Surfaces:A Review[J]. Remote Sensing Reviews, 2001, 20(3):227-255
    [52] van Hove L W A, Jacobs C M J, Heusinkveld B G, et al. Temporal and Spatial Variability of Urban Heat Island and Thermal Comfort Within the Rotterdam Agglomeration[J]. Building and Environment, 2015, 83:91-103
    [53] Zhang Y S, Balzter H, Zou C C, et al. Characterizing Bi-temporal Patterns of Land Surface Temperature Using Landscape Metrics Based on Sub-pixel Classifications from Landsat TM/ETM[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 42:87-96
    [54] Powell S L, Cohen W B, Yang Z, et al. Quantification of Impervious Surface in the Snohomish Water Resources Inventory Area of Western Washington from 1972-2006[J]. Remote Sensing of Environment, 2008, 112(4):1895-1908
    [55] Paul M J, Meyer J L. Streams in the Urban Landscape[J]. Annual Review of Ecology and Systematics, 2001, 32:333-365
    [56] Silva C P, García C E, Estay S A, et al. Bird Richness and Abundance in Response to Urban Form in a Latin American City:Valdivia, Chile as a Case Study[J]. PLoS ONE, 2015, 10(9):120-136
    [57] Massetti L, Petralli M, Orlandini S. The Effect of Urban Morphology on Tilia X Europaea Flowering[J]. Urban Forestry & Urban Greening, 2015, 14(1):187-193
    [58] Patino J E, Duque J C, Pardo-Pascual J E, et al. Using Remote Sensing to Assess the Relationship Between Crime and the Urban Layout[J]. Applied Geography, 2014, 55:48-60
    [59] Li W, Ouyang Z, Zhou W, et al. Effects of Spatial Resolution of Remotely Sensed Data on Estimating Urban Impervious Surfaces[J]. Journal of Environmental Sciences, 2011, 23(8):1375-1383
    [60] Brabec E, Schulte S, Richards P L. Impervious Surfaces and Water Quality:A Review of Current Literature and Its Implications for Watershed Planning[J]. Journal of Planning Literature, 2002, 16(4):499-514
  • [1] 眭海刚, 刘超贤, 黄立洪, 华丽.  遥感技术在震后建筑物损毁检测中的应用 . 武汉大学学报 ● 信息科学版, 2019, 44(7): 1008-1019. doi: 10.13203/j.whugis20190070
    [2] 龚健雅.  人工智能时代测绘遥感技术的发展机遇与挑战 . 武汉大学学报 ● 信息科学版, 2018, 43(12): 1788-1796. doi: 10.13203/j.whugis20180082
    [3] 邵振峰, 张源, 黄昕, 朱秀丽, 吴亮, 万波.  基于多源高分辨率遥感影像的2 m不透水面一张图提取 . 武汉大学学报 ● 信息科学版, 2018, 43(12): 1909-1915. doi: 10.13203/j.whugis20180196
    [4] 罗名海, 蒋子龙, 程琦, 秦思娴, 杨娜娜, 张歆越.  地理国情在武汉市土地资源承载力评价中的应用 . 武汉大学学报 ● 信息科学版, 2018, 43(12): 2317-2324. doi: 10.13203/j.whugis20180389
    [5] 李德仁, 马军, 邵振峰.  论地理国情普查和监测的创新 . 武汉大学学报 ● 信息科学版, 2018, 43(1): 1-9. doi: 10.13203/j.whugis20170356
    [6] 李德仁, 丁霖, 邵振峰.  关于地理国情监测若干问题的思考 . 武汉大学学报 ● 信息科学版, 2016, 41(2): 143-147. doi: 10.13203/j.whugis20150555
    [7] 李德仁, 刘立坤, 邵振峰.  集成倾斜航空摄影测量和地面移动测量技术的城市环境监测 . 武汉大学学报 ● 信息科学版, 2015, 40(4): 427-435. doi: 10.13203/j.whugis20140982
    [8] 李德仁, 王长委, 胡月明, 刘曙光.  遥感技术估算森林生物量的研究进展 . 武汉大学学报 ● 信息科学版, 2012, 37(6): 631-635.
    [9] 曹丽琴, 李平湘, 张良培, 许雄.  Fuzzy ARTMAP算法在城市不透水面估算中的应用研究 . 武汉大学学报 ● 信息科学版, 2012, 37(10): 1236-1239.
    [10] 李德仁, 眭海刚, 单杰.  论地理国情监测的技术支撑 . 武汉大学学报 ● 信息科学版, 2012, 37(5): 505-512.
    [11] 张路, 高志宏, 廖明生, 李新延.  利用多源遥感数据进行城市不透水面覆盖度估算 . 武汉大学学报 ● 信息科学版, 2010, 35(10): 1212-1216.
    [12] 张诗玉, 李陶, 夏耶.  基于InSAR技术的城市地面沉降灾害监测研究 . 武汉大学学报 ● 信息科学版, 2008, 33(8): 850-853.
    [13] 徐涵秋.  一种快速提取不透水面的新型遥感指数 . 武汉大学学报 ● 信息科学版, 2008, 33(11): 1150-1153.
    [14] 姜云, 吴立新, 车德福, 徐磊.  城市地下空间资源质量评估基本单元体的研究 . 武汉大学学报 ● 信息科学版, 2007, 32(3): 275-278.
    [15] 廖明生, 江利明, 林珲, 杨立民.  基于CART集成学习的城市不透水层百分比遥感估算 . 武汉大学学报 ● 信息科学版, 2007, 32(12): 1099-1102.
    [16] 段滔, 刘耀林.  基于移动趋势面分析法的城市基准地价评估研究 . 武汉大学学报 ● 信息科学版, 2004, 29(6): 529-532.
    [17] 李建龙, 蒋平.  遥感技术在大面积天然草地估产和预报中的应用探讨 . 武汉大学学报 ● 信息科学版, 1998, 23(2): 153-157.
    [18] 蓝运超, 杨仁.  城市系统规划与遥感、地理信息系统技术 . 武汉大学学报 ● 信息科学版, 1991, 16(1): 85-91.
    [19] 杨凯, 林开愚.  遥感技术在洪湖水生植物分布状况调查中的应用 . 武汉大学学报 ● 信息科学版, 1983, 8(1): 1-13.
    [20] 程朋根, 岳琛, 朱欣焰.  多源数据支持下的城市生态环境评价及其与人类活动关系的研究 . 武汉大学学报 ● 信息科学版, 0, 0(0): 0-0. doi: 10.13203/j.whugis20200382
  • 加载中
计量
  • 文章访问数:  2678
  • HTML全文浏览量:  127
  • PDF下载量:  928
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-27
  • 刊出日期:  2016-05-05

遥感技术在不透水层提取中的应用与展望

doi: 10.13203/j.whugis20160038
    基金项目:  国家重大设备专项项目(2012YQ16018505);国家科技支撑计划(2013BAH42F03);国家教育部新世纪优秀人才资助计划(NCET-12-0426);武汉大学创新人才项目(2042014kf0212);地理国情监测专项基金。
    作者简介:

    李德仁,教授,博士生导师,中国科学院院士,中国工程院院士,国际欧亚科学院院士,现从事以遥感、全球卫星定位系统和地理信息系统为代表的空间信息科学与技术的科研与教学工作,推进地理国情监测、数字城市与数字中国、智慧城市与智慧中国的研究及相关建设。drli@whu.edu.cn

    通讯作者: 罗晖,博士生。luohui_lh@whu.edu.cn
  • 中图分类号: P237.9

摘要: 地理国情监测是我国测绘工作在新时代的主要任务和发展方向。不透水层分布是城市和区域环境的生态考核指标之一,对城市和区域的发展规划和生态评估具有重要意义。但是,目前我国地理国情普查和监测工作中依然缺少对不透水层分布的调查和统计。基于遥感技术的不透水层提取具有实时、快速、精确的特点,本文首先针对不同遥感影像的数据特点和优势介绍了不透水层提取的经典理论,然后对现有的不透水层应用方向进行了总结,主要包括水文、城市热岛效应、土地利用及变化、城市生态环境监测以及城市规划,最后展望其在相关行业中的潜在应用,并建议将不透水层分布列为我国地理国情调查和监测的内容。

English Abstract

李德仁, 罗晖, 邵振峰. 遥感技术在不透水层提取中的应用与展望[J]. 武汉大学学报 ● 信息科学版, 2016, 41(5): 569-577,703. doi: 10.13203/j.whugis20160038
引用本文: 李德仁, 罗晖, 邵振峰. 遥感技术在不透水层提取中的应用与展望[J]. 武汉大学学报 ● 信息科学版, 2016, 41(5): 569-577,703. doi: 10.13203/j.whugis20160038
LI Deren, LUO Hui, SHAO Zhenfeng. Review of Impervious Surface Mapping Using Remote Sensing Technology and Its Application[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 569-577,703. doi: 10.13203/j.whugis20160038
Citation: LI Deren, LUO Hui, SHAO Zhenfeng. Review of Impervious Surface Mapping Using Remote Sensing Technology and Its Application[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 569-577,703. doi: 10.13203/j.whugis20160038
参考文献 (60)

目录

    /

    返回文章
    返回