留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

顾及双线道路特征的变化信息提取方法

张浩 武芳 巩现勇 张俊涛 李靖涵

张浩, 武芳, 巩现勇, 张俊涛, 李靖涵. 顾及双线道路特征的变化信息提取方法[J]. 武汉大学学报 ● 信息科学版, 2018, 43(5): 798-805. doi: 10.13203/j.whugis20150618
引用本文: 张浩, 武芳, 巩现勇, 张俊涛, 李靖涵. 顾及双线道路特征的变化信息提取方法[J]. 武汉大学学报 ● 信息科学版, 2018, 43(5): 798-805. doi: 10.13203/j.whugis20150618
ZHANG Hao, WU Fang, GONG Xianyong, ZHANG Juntao, LI Jinghan. A Method of Change Detection Considering Characteristics of Dual-Carriageway Roads[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 798-805. doi: 10.13203/j.whugis20150618
Citation: ZHANG Hao, WU Fang, GONG Xianyong, ZHANG Juntao, LI Jinghan. A Method of Change Detection Considering Characteristics of Dual-Carriageway Roads[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 798-805. doi: 10.13203/j.whugis20150618

顾及双线道路特征的变化信息提取方法

doi: 10.13203/j.whugis20150618
基金项目: 

国家自然科学基金 41471386

国家自然科学基金 41101362

国家自然科学基金 41301524

信息工程大学地理空间信息学院学位论文创新与创优基金 XS201509

详细信息
    作者简介:

    张浩, 硕士, 主要从事制图综合与空间数据更新研究。zhanghaogis@163.com

    通讯作者: 武芳, 博士, 教授, 博士生导师。wufang_630@126.com
  • 中图分类号: P208

A Method of Change Detection Considering Characteristics of Dual-Carriageway Roads

Funds: 

The National Natural Science Foundation of China 41471386

The National Natural Science Foundation of China 41101362

The National Natural Science Foundation of China 41301524

Foundation of Thesis Innovation and Superior, Institute of Geographical Spatial Information, Information Engineering University XS201509

More Information
    Author Bio:

    ZHANG Hao, master, specializes in cartographic generalization and spatial database updating. E-mail: zhanghaogis@163.com

    Corresponding author: WU Fang, PhD, professor. E-mail:wufang_630@126.com
图(9) / 表(3)
计量
  • 文章访问数:  841
  • HTML全文浏览量:  57
  • PDF下载量:  255
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-16
  • 刊出日期:  2018-05-05

顾及双线道路特征的变化信息提取方法

doi: 10.13203/j.whugis20150618
    基金项目:

    国家自然科学基金 41471386

    国家自然科学基金 41101362

    国家自然科学基金 41301524

    信息工程大学地理空间信息学院学位论文创新与创优基金 XS201509

    作者简介:

    张浩, 硕士, 主要从事制图综合与空间数据更新研究。zhanghaogis@163.com

    通讯作者: 武芳, 博士, 教授, 博士生导师。wufang_630@126.com
  • 中图分类号: P208

摘要: 在城市双线道路数据更新的需求下,通过分析已有要素匹配方法,提出了一种顾及双线道路特征的单、双线道路匹配方法,用于提取城市双线道路增量更新中的变化信息。为保证双线道路的整体性,将双线道路多边形作为匹配对象,通过分析旧单线道路与多边形的方向、长度以及位置关系设计了单、双线道路匹配综合指标计算模型;然后,根据匹配综合指标确定单、双线道路匹配关系并提取变化信息。实验结果表明,该方法能够较好地满足双线道路更新中变化信息提取的要求,具有一定的实用性。

English Abstract

张浩, 武芳, 巩现勇, 张俊涛, 李靖涵. 顾及双线道路特征的变化信息提取方法[J]. 武汉大学学报 ● 信息科学版, 2018, 43(5): 798-805. doi: 10.13203/j.whugis20150618
引用本文: 张浩, 武芳, 巩现勇, 张俊涛, 李靖涵. 顾及双线道路特征的变化信息提取方法[J]. 武汉大学学报 ● 信息科学版, 2018, 43(5): 798-805. doi: 10.13203/j.whugis20150618
ZHANG Hao, WU Fang, GONG Xianyong, ZHANG Juntao, LI Jinghan. A Method of Change Detection Considering Characteristics of Dual-Carriageway Roads[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 798-805. doi: 10.13203/j.whugis20150618
Citation: ZHANG Hao, WU Fang, GONG Xianyong, ZHANG Juntao, LI Jinghan. A Method of Change Detection Considering Characteristics of Dual-Carriageway Roads[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 798-805. doi: 10.13203/j.whugis20150618
  • 道路数据更新是整个空间数据库更新工作的重点之一,它的工作量在整个更新工作中占了主要部分。由于更新数据源和待更新数据可能存在属性信息或数据格式的差异,一般不考虑整体替换,而是采用增量更新的方式,即通过更新数据源和起始比例尺数据之间的匹配来提取变化信息,完成空间数据的更新。文献[1-2]针对国家1:5万数据库更新需求,提出了基于网眼密度的道路选取和顾及层次分析的道路匹配策略,实现道路数据缩编更新的自动综合处理,设计了缩编更新优先、影像一体化更新为主的更新方法。文献[3]基于线状地物的几何图形相似性度量模型,提出了基于线状地物相似度的空间数据变化检测算法,实现了基于线状图形相似性认知的道路数据变化发现与提取。文献[4]通过利用旧小比例尺上未发生变化的数据,将道路的单位影响范围作为首要选取标准对新增数据进行取舍。这些关于道路更新的研究对象都是单线道路,而随着城镇建设的迅速发展,大比例尺道路数据也面临着更新问题。

    在现势性较好的大比例尺更新数据源中,大部分城市主干道呈双线模式,而对于待更新道路数据,由于其现势性较差,城市主干道却以单线形式存储,如果直接采用传统的单线道路匹配方法进行变化信息提取,势必影响变化信息的提取以及后面的更新操作。针对以上情况,本文提出了顾及双线道路特征的单、双线道路匹配方法,以实现城市双线道路增量更新中变化信息的提取。从识别出来的双线道路多边形入手,分析旧单线道路与多边形数据的方向、长度、位置等相似度指标,设计出了单、双线道路匹配的综合指标计算模型,最终通过匹配综合指标与阈值的关系确定单、双线道路的匹配关系。对本文的研究对象作以下说明:①新、旧数据为同尺度的大比例尺道路数据;②变化信息提取的对象主要是道路的几何信息;③双线道路是指用双线来表达的矢量道路数据。

    • 对于矢量数据更新,匹配是发现数据变化的主要手段。由于数据原因,许多道路都是由多个路段组成,这种情况下只考虑属性信息无法准确判定匹配对象。但利用属性相似度,如分类代码、名称相似或相同,可以提高匹配的效率[5-6]。由于新、旧道路数据语义信息可能存在较大的差异,所以本文方法不考虑道路数据的语义相似性。

      针对单、双线道路匹配,结合现有的矢量要素匹配方法,本文提出以下3种匹配策略:

      1) 线-线匹配法。(1)方法1:双线道路直接作为匹配对象参与计算,为了避免出现重复匹配,如果双线路段的其中一条线找到所有与之匹配的对象,则与其构成双线路段的另一条线不需参与匹配计算。(2)方法2:以双线道路中心线作为匹配对象参与计算。线-线匹配常通过Hausdorff(HD)距离[7-8]或Fréchet距离[9]确定匹配关系。

      2) 线-面关系匹配方法。将双线道路转换成双线多边形数据,通过判断单线道路与双线多边形之间的关系,确定单、双线道路之间的匹配关系(见图 1)。

      图  1  单、双线匹配转换

      Figure 1.  Conversion of Single-and Dual-Carriageway Roads Matching

      3) 面-面匹配法。将双线道路数据转换成双线多边形,对旧道路数据构建缓冲区,通过判断多边形与旧单线道路缓冲区的匹配关系,确定单、双线道路匹配关系。面-面匹配可以通过面积重叠率[10]或空间相似性[11]等指标确定。

      对于以上3种策略,策略1中的方法1在进行匹配时只考虑双线道路中的其中一条线,而忽视了另一条线的影响,未顾及双线道路的整体性,容易出现漏匹配现象。如图 2所示,线①和②是组成双线路段的线段,线①只与单线路段AB匹配,但是和线①对应的线②只与路段BC匹配。此时,就出现单线路段ABBC与双线道路漏匹配现象,进而影响变化信息提取结果。方法2需要在识别出双线道路的基础上提取中心线,加大了匹配的复杂度。策略3将“线-线”匹配转换为“面-面”匹配,而“面-面”匹配考虑最多的指标之一就是面积重叠率,相对于线、面求交运算,面、面求交过程更加复杂; 此外缓冲区半径的大小也很难控制,违背了“降维”思想解决问题的思路。策略2是从线-面关系出发,通过分析线要素和面要素的空间关系,确定单、双线道路的匹配关系。该策略可直接利用形态分析方法提取出双线道路多边形数据,以双线道路多边形为处理对象,保持了双线道路的整体性,减少了数据量。此外,双线道路多边形数据能够辅助更新后的冲突检测与处理,有利于提高更新后冲突处理的效率。综上分析,本文采用策略2进行城市双线道路更新中的变化信息提取。

      图  2  策略1匹配方法事例

      Figure 2.  Example of Matching Method One

    • 双线道路识别是本文研究的基础。观察数据发现,双线道路构成的多边形多呈细长状,其形态特征明显区别于其他道路构成的多边形。如果能够识别出这些细长的多边形,正符合本文的匹配策略。因此,本文关于双线道路多边形识别的步骤为:(1)对新道路数据进行拓扑预处理,生成结点-弧段型数据;(2)根据路段最小闭合原则将新道路数据生成多边形数据,该过程中需要记录构成每个多边形的路段ID号;(3)通过分析多边形几何特征提取出由双线路段构成的多边形数据[6]。(4)构建双线道路多边形与相关双线路段的关系映射表。根据路段长度、邻接关系,将与多边形相关联的双线路段按主方向上的长边分为两组。

      根据构成双线道路多边形的路段数量,多形分为以下4种:(1)三角形。由3条路段构成,一般出现在双线道路“丁”字路口处,面积较小(图 3(a))。(2)小四边形。由4条路段构成,主要出现在双线道路“十”字路口处,面积较小(图 3(b))。(3)带状四边形。由4条路段构成,整体呈条带状(图 3(c)),该类型最为常见。(4)带状多边形。构成路段数量大于4条,整体呈条带状(图 3(d))。相对于旧单线道路,三角形、小四边形对应的分别是单线道路“丁”字路和“十”字路口交点,所以不作讨论。后两种类型是参与匹配计算的主要对象。

      图  3  双线道路多边形类型

      Figure 3.  Dual-Carriageway Road Polygon Types

    • 1) 方向相似度。方向特征是描述道路特征的重要指标,新旧数据中同名单、双线道路的方向保持高度相似。双线路段的方向采用双线路段多边形最小外接矩形的主轴方向表示[12](图 4(a)中箭头方向)。单线路段方向用其总体方向表示[13],也就是线要素首末结点连线方向(图 4(b)中箭头方向)。设多边形方向和线方向对应的方向向量分别为S1S2,其夹角为θ,则两条道路之间方向相似度SO为:

      $$ {S_O} = 1-\frac{{2a}}{\pi } $$ (1)

      图  4  要素方向

      Figure 4.  Direction of Features

      式中, $\theta = \arccos \frac{{{\mathit{\boldsymbol{S}}_1} \cdot {\mathit{\boldsymbol{S}}_2}}}{{\left| {{\mathit{\boldsymbol{S}}_1}} \right|\left| {{\mathit{\boldsymbol{S}}_2}} \right|}}$; α定义为如果$\theta > \frac{\pi }{2}$,α=π-θ, 否则,α=θ

      由式(1)可知,方向相似度的值域是[0, 1]。其值越大,单、双线道路匹配的可能性就越大。

      2) 位置邻近度。位置信息是地理实体空间表达的基础,距离可以表示位置上的接近程度。HD距离最初用来测定点集之间的距离,可用于测量两个点集的匹配程度,所以曲线之间的距离可以通过HD距离来近似表达[14]。但双线道路由两条线构成,为了顾及双线道路的整体性,本文采用位置邻近度衡量单、双线道路位置上的接近程度(见式(2))。设目标线段T到构成双线路段多边形的两条长边(如果构成多边形的双线路段数量大于2条,则根据关系映射表将主轴方向上的两组路段分别合并成一条)的HD距离分别为DT1DT2, 位置邻近度SL计算公式为:

      $$ {S_L} = 1-\frac{{\left| {{D_{T1}}-{D_{T2}}} \right|}}{{\max \left( {{D_{T1}}, {D_{T2}}} \right)}} $$ (2)

      由式(2)可知,位置邻近度的值域是[0, 1]。

      图 5所示,路段AB与线①和线②构成的双线路段是同名道路,但依据长度相似度和方向相似度,路段CD也可能是双线路段的同名道路。通过计算路段AB、路段CD与双线路段的位置邻近度,发现路段AB的更高,因此,可确定路段AB与双线路段是同名道路。由以上分析可知,位置邻近度越大,单、双线路段越可能是同名道路。

      图  5  位置邻近度对比

      Figure 5.  Comparison of Location Similarity

      3) 长度相似度。设目标(旧)单线路段为T,长度为LT,参考(新)双线道路多边形为R,构成多边形的双线路段数量为n,第i个路段长度为li,主方向长度为LRT在面要素(或缓冲区)R中的长度为LTR,则长度相似度DL(T, R)的计算公式为:

      $$ {L_R} = \frac{1}{2}\sum\limits_{i = 1}^n {{l_i}} $$ (3)
      $$ {D_l}\left( {T, R} \right) = \frac{{{L_{TR}}}}{{{L_T}}} $$ (4)
      $$ {D_l}\left( {R, T} \right) = \frac{{{L_{TR}}}}{{{L_R}}} $$ (5)
      $$ {D_L}\left( {T,R} \right) = \max \left\{ {{D_l}\left( {T,R} \right),{D_l}\left( {R,T} \right)} \right\} $$ (6)

      Dl(T, R)反映了目标要素被面状要素包围的情况,当值为1时,说明目标要素在空间上被参考要素完全包含; 而Dl(R, T)则反映了参考要素是否被线要素穿越的情况,当值为1时,说明参考多边形要素在空间上被单线目标要素完全穿越。如果Dl(T, R)或者Dl(R, T)在阈值范围内,即认为单线道路与面要素对应的双线道路可能为同名道路,但本文采用两者的最大值来表达单、双线道路的长度相似度。当Dl(T, R)、Dl(R, T)都接近1时,说明TR 1:1匹配[15]。如图 6(a)所示,路段AB与双线道路①1:1匹配;图 6(b)中,路段AB与路段CD相交于点E,但新道路数据中没有与路段CD对应的道路,此时②与路段EB、路段AE的长度相似度分别为Dl(T, R)、Dl(R, T);图 6(c)中,路段CD将与路段AB呈1:1匹配的双线道路面分成了③和④两部分,而旧道路数据中没有与路段CD对应的道路,此时路段AB与双线道路③、④的长度相似度分别为Dl(R, T)、Dl(T, R)。因此,本文提出的长度相似度指标,能够顾及常见的匹配情况(mn除外)。对于mn的匹配较为复杂,一般都是转化为1:nn:1匹配,此外本文研究的是同尺度道路更新,mn匹配情况较少,所以对于mn匹配不作考虑。

      图  6  常见匹配类型

      Figure 6.  Common Matching Type

    • 空间实体相似度一般包括空间关系相似度和几何特征相似度[11]。在关于空间关系相似性的研究中,文献[16]认为空间目标之间的拓扑、方向和距离关系是最为关键的,文献[17]在关于空间(群)目标相似关系的研究中针对拓扑、方向以及距离关系的权值设置,分别赋予上述3种相似度0.4、0.3、0.3的权值。新、旧数据差异会产生拓扑关系差异,并且双线道路拓扑关系较为复杂,因此本文对拓扑关系不作考虑,而将方向相似度和位置邻近度的权重都设为0.5。空间关系总体相似度SS的计算公式为:

      $$ {S_S} = 0.5{S_O} + 0.5{S_L} $$ (7)

      地理要素几何特征相似度包括长度相似度、形状相似度等。通常情况下,长度可以很直观地反映线状要素的形状特征,道路的长度相似度也可近似表示形状相似度[13],因此本文采用长度相似度表达单、双线道路间的几何特征相似性。依据Bruns理论[16],将空间关系相似度权重设为0.6,几何特征相似度权重设为0.4。单、双线道路匹配的综合指标SM计算公式为:

      $$ {S_M} = 0.6{S_S}{\rm{ + }}0.4{D_L}\left( {T, R} \right) $$ (8)
    • 以双线道路的多边形数据为参考数据,以待更新道路数据为目标数据,建立新、旧要素之间的匹配关系。具体匹配流程如下:

      1) 遍历种子多边形,对其构建缓冲区,利用空间查询方法从目标数据集中检索出与多边形缓冲区相交或者被其包含的所有路段,形成候选匹配集,为了防止因匹配数据位置偏差带来的影响应设置较大的缓冲区半径。

      2) 根据候选匹配集,计算单、双线路段间的方向相似度、位置邻近度以及长度相似度,根据式(7)、(8)计算总体匹配相似度。

      3) 判断总体相似度是否满足阈值,若处于预先设置的阈值范围内,则该路段是与双线路段匹配的同名道路;若不在阈值范围内,则说明没有与双线路段匹配的对象,即双线路段为新增道路。

      4) 遍历后续种子多边形,重复步骤1)~3),直至结束。

    • 为验证本文方法的有效性,以某城市相同区域1:10 000的城市道路为数据进行实验。图 7(a)是2000年的道路数据,包含945条路弧;图 7(b)是2012年的道路数据,包含1 353条弧段;图 7(c)是从新道路数据中提取的双线多边形数据,经处理后包含113个多边形。

      图  7  实验数据与匹配结果

      Figure 7.  Experiment Data and Matching Results

      多边形数据与旧道路数据叠加效果如图 7(d)所示。本文针对的是城市双线道路更新,在1:10 000的城市道路数据中,双线道路大多是城市主干道。变化道路是指单线道路与多边形存在匹配关系的道路,即那些原来以单线表示、后来变为双线的道路,按照该原则,提取变化路段126条(图 7(e)),其中错误提取5条,漏提取2条。如果双线路段多边形没有找到与之匹配的对象,则认为该多边形对应的双线路段是新增道路。图 7(f)是正确提取的5对新增双线路段,该路段向南进行了延长,并且道路的宽度或者级别有所增加。由于一般城市主干道不会消失,所以通过变化检测得到的消失道路数量为0。

      图 8所示的是局部单、双线道路数据以及匹配效果,相应的匹配相似度指标统计如表 1所示。由表 1可知双线路段D1D2D4D5分别与单线路段ABBDDAEF匹配,与视觉上的判断一致。但根据图 8(a)图 8(b),双线路段D3也应该和单线路段BCD属于同名道路。分析表 1可知,由于单线路段BCD与双线路段D3的局部几何形态差异过大,导致单线路段在预先设好的缓冲范围内的长度过小,使得计算出来的长度相似度偏小, 影响了总体匹配相似度,所以匹配失败。如果这种情况多处出现,可以通过适当增大缓冲区半径来解决。经过多次实验测试,多边形缓冲区设置为21 m、总体匹配相似度阈值设为0.87时,匹配效果最佳(参数阈值的大小与匹配数据之间的差异以及双线道路的宽度有关,不同的实验数据设置不同的参数阈值)。

      图  8  局部道路数据匹示例

      Figure 8.  Partial Roads Matching Example

      表 1  双线道路多边形与旧道路数据匹配参数统计

      Table 1.  Statistics Matching Parameters of Polygons Composed by Dual-carriageway Roads and Old Roads

      双线数据 旧道路数据 方向相似度 位置邻近度 长度相似度 总体相似度 匹配结果
      D1 路段AB 0.995 261 0.977 085 0.839 791 0.927 620 成功
      D2 路段BD 0.969 186 0.678 630 1.000 000 0.894 345 成功
      D3 路段BCD 0.990 595 0.643 769 0.543 992 0.707 906 失败
      D4 路段DA 0.982 046 0.655 489 1.000 000 0.891 260 成功
      D5 路段EF 0.984 059 0.980 465 1.000 000 0.989 357 成功
    • 针对同组数据,分别采用其他匹配策略进行实验。策略1采用方法1,利用HD距离确定匹配关系,策略3采用面积重叠率法。不同的匹配策略产生不同的匹配结果,具体匹配情况如表 2所示。由表 2可知,本文方法匹配成功率高于其他2种匹配方法。

      表 2  不同匹配策略实验结果对比表

      Table 2.  Comparion of Experiment Results with Other Matching Methods

      匹配方法 参考数据类型 匹配对数 正确匹配 错误匹配 未匹配 匹配正确率(%)
      HD距离法 双线路段 123 103 20 21 85.25
      本文方法 多边形 128 122 6 7 95.31
      面积重叠率法 多边形 133 109 24 14 81.96

      变化信息提取是根据路段间的匹配关系进行的,但是匹配对数不一定等于从旧道路数据中提取的变化路段数,因为有可能存在m:1或1:m的情况。当匹配关系都是1:1时,匹配对数等于提取路段数, 根据匹配建立的单、双线道路关系,进行变化路段提取。图 9是采用3种方法建立匹配关系后提取变化路段的统计情况,表 3是对3种方法相关结果的分析。由表 3可知,本文方法提取的变化路段的正确率高于其他两种方法,进一步证明了本文方法对于单、双线道路匹配的合理性和有效性。

      图  9  变化道路提取对比

      Figure 9.  Comparison of Changing Roads Extraction

      表 3  变化路段提取结果对比表

      Table 3.  Comparison Results of Changing Roads Extraction

      匹配方法 提取路段 正确提取 错误提取 漏提取 新增路段 正确率(%)
      HD距离法 122 103 19 23 5 84.43
      本文方法 126 121 5 2 5 96.03
      面积重叠率法 129 109 17 9 5 84.50

      HD距离是一种定义于两点集上的最大-最小距离,一般用于测量两条线的匹配程度。但由于路段长度差异的影响,HD距离法对m:1或1:m的匹配情况无法实现正确匹配。此外,线顶点的分布差异会引起HD距离发生突变现象,容易超出阈值范围,进而影响匹配结果。对于面积重叠率方法,由于多源道路数据一般存在位置误差,通过增大缓冲区半径能够增加同名道路之间的重叠度,但缓冲区半径大小很难确定,同时会增加与周边邻近非同名路段的重叠,降低了识别同名实体的准确度,从而影响匹配效果。相比之下,本文方法有以下优点:

      1) 通过方向相似度约束了单线路段与双线路段整体方向的一致性;

      2) 采用位置邻近度保证了单线路段与双线路段的位置邻近性。虽然位置邻近度中的距离计算采用的也是HD距离,但由于双线路段的长度、结点分布特征几乎是一致的,所以采用HD距离计算位置邻近度不会因距离突变而影响匹配结果;

      3) 本文用到的几何特征描述指标是最大长度相似度,这样可以避免m:1或1:m情况下的漏匹配情况。

    • 城市双线道路增量更新中的变化信息提取是更新的重点与难点,目前国内尚缺乏双线道路在道路更新中的处理策略。本文首先根据形态分析法识别出新道路数据中的双线道路多边形,为保证双线道路的完整性,以双线路段多边形为参考数据,通过综合分析单、双线路段的方向相似度、位置邻近度以及长度相似度等匹配指标,结合Bruns理论,设计了单、双线道路匹配的综合指标计算方法,然后根据综合指标实现单、双线道路的匹配与变化信息提取。实验结果表明,本文方法具有较好的可行性与实用性,对进一步研究空间数据的自动更新具有重要的理论和实践意义。需要进一步研究的工作:(1)拓扑信息对单、双线道路匹配的影响。(2)双线道路在跨比例尺道路数据更新中的处理策略。

参考文献 (17)

目录

    /

    返回文章
    返回