留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

短基线集InSAR技术用于大同盆地地面沉降、地裂缝及断裂活动监测

杨成生 张勤 赵超英 季灵运

杨成生, 张勤, 赵超英, 季灵运. 短基线集InSAR技术用于大同盆地地面沉降、地裂缝及断裂活动监测[J]. 武汉大学学报 ● 信息科学版, 2014, 39(8): 945-950. doi: 10.13203/j.whugis20130656
引用本文: 杨成生, 张勤, 赵超英, 季灵运. 短基线集InSAR技术用于大同盆地地面沉降、地裂缝及断裂活动监测[J]. 武汉大学学报 ● 信息科学版, 2014, 39(8): 945-950. doi: 10.13203/j.whugis20130656
YANG Chengsheng1 ZHANG Qin1 ZHAO Chaoying1, JI Lingyun2, . Small Baseline Bubset InSAR Technology Used in Datong Basin GroundSubsidence,Fissure and Fault Zone Monitoring[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8): 945-950. doi: 10.13203/j.whugis20130656
Citation: YANG Chengsheng1 ZHANG Qin1 ZHAO Chaoying1, JI Lingyun2, . Small Baseline Bubset InSAR Technology Used in Datong Basin GroundSubsidence,Fissure and Fault Zone Monitoring[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8): 945-950. doi: 10.13203/j.whugis20130656

短基线集InSAR技术用于大同盆地地面沉降、地裂缝及断裂活动监测

doi: 10.13203/j.whugis20130656
基金项目: 国家自然科学基金资助项目(41304016,41274004,41372375);地震专项基金资助项目(201208009);精密工程与工业测量国家测绘地理信息局重点实验室开放基金资助项目(PF2011-12)
详细信息
    作者简介:

    杨成生,博士,主要从事高精度InSAR地质灾害监测技术与方法研究。

    通讯作者: 张勤
  • 中图分类号: P228

Small Baseline Bubset InSAR Technology Used in Datong Basin GroundSubsidence,Fissure and Fault Zone Monitoring

Funds: The National Natural Science Foundation of China,Nos.41304016,41274004,41372375;China Earthquake SpecialFund,No.201208009;the Key Laboratory of the Precision Engineering and Industrial Measurement,No.PF2011-12.
More Information
    Author Bio:

    YANG Chengsheng,PhD,specializes in high precision InSAR techniques and methods for geological disaster monitoring.

    Corresponding author: ZHANG Qin
  • 摘要: 目的 大同盆地是我国地面沉降、地裂缝等地质灾害集中发育区之一。采用短基线InSAR方法对覆盖该地区的40景 EnvisatSAR数据进行了处理,获取了大同盆地的地面沉降分布特征,分析了典型沉降区的时间序列形变特征,研究了盆地地面沉降、地裂缝及断裂活动之间的相互影响。研究表明,大同市地面沉降受地下水开采影响明显,同时其走向受断裂带控制。此外,还分析了大同机车厂地裂缝的水平及垂直活动特征,及其与降水量的关系。
  • [1] Peng Jianbing,Fan Wen,Li Xian,et al.Some KeyQuestions in the Formation of Ground Fissures inthe Fen-Wei Basin[J].Journal of Engineering Ge-ology,2007,15(4):433-440(彭建兵,范文,李喜安,等.汾渭盆地地裂缝成因研究中的若干关键问题[J].工程地质学报,2007,15(4):433-440)[2] Liu Yuhai,Chen Zhixin,Niu Fujun.Characteristicsof Land Subsidence and Environmental GeologyEffects Induced by Groundwater Exploration in Da-tong City[J].The Chinese Journal of GeologicalHazard and Control,1999,9(2):155-160(刘玉海,陈志新,牛富俊.大同市地面沉降特征及地下水开采的环境地质效应[J].中国地质灾害与防治学报,1999,9(2):155-160)[3] Zan Yalin.Relation Between Ground Fissure For-mation and Ground Water Mining in Urban Datong[J].Coal Geology of China,2006,18(6):26-29(昝雅玲.大同市区地下水开采与地裂缝形成的关系[J].中国煤田地质,2006,18(6):26-29)[4] Li Shude,Yuan Renmao.The Formation Mecha-nism of Ground Fissure in Datong City[J].ActaScientiarum Naturalium Universitatis Pekinensis,2002,38(1):104-108(李树德,袁仁茂.大同地裂缝灾害形成机理[J].北京大学学报(自然科学版),2002,38(1):104-108)[5] Lv Jifeng.The Influence on Ground Fissures Activ-ities by Groundwater Exploitation[J].NeijiangScience and Technology,2004,3:79-80(吕继峰.大同市地下水开采对地裂缝活动的影响[J].内江科技,2004,3:79-80)[6] Ren Jianguo,Gong Weiguo,Jiao Xiangju.Distribu-tion Characteristics of Ground Fissure in Datong andIts Development Trend[J].Earthquake Reasearchin Shanxi,2004,118(3):39-42(任建国,龚卫国,焦向菊.山西大同市地裂缝的分布特征及其发展趋势[J].山西地震,2004,118(3):39-42)[7] Hanssen R.Radar Interferometry:Data Interpreta-tion and Error Analysis[M].New York:Springer,2001[8] Zhao Chaoying,Ding Xiaoli,Zhang Qin,et al.Mo-nitoring of Recent Land Subsidenceand Ground Fis-sures in Xi’an with SAR Interferometry[C].IS-PRS,Beijing,2008[9] Massonnet D M,Rossi C C,Carmona C,et al.TheDisplacement Field of the Landers EarthquakeMapped by Radar Interferometry[J]. Nature,1993,364(8):138-142[10]Zebker H A,Rosen P A,Goldstein R M,et al.Onthe Derivation of Coseismic Displacement Fields U-sing Differential Radar Interferometry:the LandersEarthquake[J].Journal of Geophysical Research,1994,99(B10):19617-19634[11]Lu Z,Patrick M,Fielding E J,et al.Lava Volumefrom the 1997Eruption of Okmok Volcano,Alas-ka,Estimated from Spaceborne and Airborne Inter-ferometric Synthetic Aperture Radar[J].IEEETrans Geosci.Remote Sens,2003,41:1428-1436[12]Goldstein R M,Engelhardt H,Kamb B.et al.Sat-ellite Radar Interferometry Formonitoring Ice SheetMotion:Application to an Antarctic Ice Stream[J].Science,1993,262(5 139):1525-1530[13]Lanari R,Mora O,Manunta M,et al.A Small-baseline Approach for Investigating Deformations onFull-resolution Differential SAR Interferograms[J].IEEE Transactions on Geoscience and Remote Sens-ing,2004,42:1377-1386[14]Lanari R,Casu F,Manzo M,et al.An Overview ofthe Small Baseline Subset Algorithm:A DInSARTechnique for Surface Deformation Analysis[J].Pure Appl.Geophys,2007,164(4):637-661[15]Berardino P.A New Algorithm for Surface Deform-ation Monitoring Based on Small Baseline Differenti-al SAR Interferograms[J].IEEE Transactions Geo-science and Remote Sensing,2002,40:2375-2383[16]Usai S.A Least Squares Database Approach forSAR Interferometry Data[J].IEEE Transactionson Geoscience and Remote Sensing,2003,41:753-760[17]Li Z,Fielding E J,Cross P.Integration of InSAR949武 汉 大 学 学 报 · 信 息 科 学 版2014年8月Time-series Analysis and Water-vapor Correctionfor Mapping Postseismic Motion After the 2003Bam(Iran)Earthquake[J].IEEE Trans.Geosci.Remote Sens,2009,47(9):3220-3230[18]Li Z,Fielding E J,Cross P,et al.InterferometricSynthetic Aperture Radar Atmospheric Correction:GPS Topography-dependent Turbulence Model[J].J Geophys Res,2006,111(B2):B02404[19]Hanssen R,Feijt A.A First Quantitative Evalua-tion of Atmospheric Effects on SAR Interferometry[C].Fringe 96’Workshop on ERS SAR Interfer-ometry,Switzerland,1996[20]Goldstein R M.Atmospheric Limitations to Repeat-track Radar Interferometry[J].Geophy Res Lett,1995,22:2517-2520[21]Hooper A.A Multi-temporal InSAR Method Incor-porating Both Persistent Scatterer and Small Base-line Approaches[J].Geophys Res Lett,2008,35:L16302[22]Hooper A,Zebker H A.Phase Unwrapping inThree Dimensions with Application to InSAR TimeSeries[J].J Opt Soc Am.A:Opt.Image Sci.Vis.,2010,24(9):2737-2747[23]Hooper A,Spaans K,Bekaert D,et al.Stamps/MTI Manual[D].Delft:Delft University of Tech-nology[24]Geological Environment Monitoring Center ofShanxi Province.Ground Fissure Exploration Re-port for Datong City[R].Shangxi:Geological Envi-ronment Monitoring Center of Shanxi Province,2006(山西省地质环境监测中心.山西省大同市地裂缝勘查报告[R].山西:山西省地质环境监测中心,2006)
  • [1] 蒲川豪, 许强, 赵宽耀, 蒋亚楠, 刘佳良, 寇平浪.  利用小基线集InSAR技术的延安新区地面抬升监测与分析 . 武汉大学学报 ● 信息科学版, 2021, 46(7): 983-993. doi: 10.13203/j.whugis20200262
    [2] 许强, 蒲川豪, 赵宽耀, 何攀, 张含悦, 刘佳良.  延安新区地面沉降时空演化特征时序InSAR监测与分析 . 武汉大学学报 ● 信息科学版, 2021, 46(7): 957-969. doi: 10.13203/j.whugis20200146
    [3] 蒲川豪, 许强, 蒋亚楠, 赵宽耀, 何攀, 张含悦, 李骅锦.  延安新区地面沉降分布及影响因素的时序InSAR监测分析 . 武汉大学学报 ● 信息科学版, 2020, 45(11): 1728-1738. doi: 10.13203/j.whugis20190372
    [4] 师芸, 李伟轩, 唐亚明, 席磊, 孟欣.  时序InSAR技术在地球环境监测及其资源管理中的应用:以交城-清徐地区为例 . 武汉大学学报 ● 信息科学版, 2019, 44(11): 1613-1621. doi: 10.13203/j.whugis20190068
    [5] 徐斌, 张艳.  地下水化学类型分区的GIS空间分析模型 . 武汉大学学报 ● 信息科学版, 2019, 44(6): 866-874. doi: 10.13203/j.whugis20170295
    [6] 朱爽, 杨国华, 刘辛中, 党学会.  川滇地区近期地壳变形动态特征研究 . 武汉大学学报 ● 信息科学版, 2017, 42(12): 1765-1772. doi: 10.13203/j.whugis20150416
    [7] 瞿伟, 王运生, 徐超, 张勤, 王庆良.  渭河盆地构造应力场有限元数值模拟 . 武汉大学学报 ● 信息科学版, 2017, 42(12): 1749-1755. doi: 10.13203/j.whugis20150574
    [8] 瞿伟, 王运生, 徐超, 张勤, 王庆良.  渭河盆地深大断裂处构造应力特征及其活动特性 . 武汉大学学报 ● 信息科学版, 2017, 42(6): 825-830. doi: 10.13203/j.whugis20140744
    [9] 张金芝, 黄海军, 毕海波, 王权.  SBAS时序分析技术监测现代黄河三角洲地面沉降 . 武汉大学学报 ● 信息科学版, 2016, 41(2): 242-248. doi: 10.13203/j.whugis20140067
    [10] 祝传广, 范洪冬, 邓喀中, 张继贤.  利用时序InSAR技术反演塘沽地区沉降历史 . 武汉大学学报 ● 信息科学版, 2014, 39(2): 248-252. doi: 10.13203/j.whugis20120610
    [11] 瞿伟, 张勤, 李振洪, 王庆良.  山西清徐地裂缝构造活动参数反演 . 武汉大学学报 ● 信息科学版, 2013, 38(4): 421-425.
    [12] 赵超英, 张勤, 朱武, Lu Zhong.  采用TerraSAR-X数据监测西安地裂缝形变 . 武汉大学学报 ● 信息科学版, 2012, 37(1): 81-85.
    [13] 何敏, 何秀凤.  利用时间序列干涉图叠加法监测江苏盐城地区地面沉降 . 武汉大学学报 ● 信息科学版, 2011, 36(12): 1461-1465.
    [14] 赵超英, 张勤, 丁晓利, 瞿伟.  利用InSAR技术定位西安活动地裂缝 . 武汉大学学报 ● 信息科学版, 2009, 34(7): 809-813.
    [15] 张诗玉, 李陶, 夏耶.  基于InSAR技术的城市地面沉降灾害监测研究 . 武汉大学学报 ● 信息科学版, 2008, 33(8): 850-853.
    [16] 董玉森, GeLinlin, ChangHsingchun, 张志.  基于差分雷达干涉测量的矿区地面沉降监测研究 . 武汉大学学报 ● 信息科学版, 2007, 32(10): 888-891.
    [17] 董国凤, 张蕾, 赵全, 赵新华.  天津市塘沽区地面沉降监测网络优化 . 武汉大学学报 ● 信息科学版, 2006, 31(11): 1015-1017.
    [18] 杨裕利.  运用地貌学方法研究平原地区隐伏断裂——以大同盆地内部NE向隐伏断裂为例 . 武汉大学学报 ● 信息科学版, 1986, 11(2): 65-75.
    [19] 张扬, 刘艳芳, 刘莹, 刘耀林, 陈雨露, 王征禹.  2007-2019年武汉市地面沉降时空分异特征及地理探测机制 . 武汉大学学报 ● 信息科学版, 0, 0(0): 0-0. doi: 10.13203/j.whugis20210143
    [20] 赵亚丽, 王彦兵, 王新雨, 田秀秀, 李小娟, 余洁.  TPCA分析北京平原区地面沉降的时空演化特征 . 武汉大学学报 ● 信息科学版, 0, 0(0): 0-0. doi: 10.13203/j.whugis20200721
  • 加载中
计量
  • 文章访问数:  1419
  • HTML全文浏览量:  33
  • PDF下载量:  550
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-07
  • 修回日期:  2014-08-05
  • 刊出日期:  2014-08-05

短基线集InSAR技术用于大同盆地地面沉降、地裂缝及断裂活动监测

doi: 10.13203/j.whugis20130656
    基金项目:  国家自然科学基金资助项目(41304016,41274004,41372375);地震专项基金资助项目(201208009);精密工程与工业测量国家测绘地理信息局重点实验室开放基金资助项目(PF2011-12)
    作者简介:

    杨成生,博士,主要从事高精度InSAR地质灾害监测技术与方法研究。

    通讯作者: 张勤
  • 中图分类号: P228

摘要: 目的 大同盆地是我国地面沉降、地裂缝等地质灾害集中发育区之一。采用短基线InSAR方法对覆盖该地区的40景 EnvisatSAR数据进行了处理,获取了大同盆地的地面沉降分布特征,分析了典型沉降区的时间序列形变特征,研究了盆地地面沉降、地裂缝及断裂活动之间的相互影响。研究表明,大同市地面沉降受地下水开采影响明显,同时其走向受断裂带控制。此外,还分析了大同机车厂地裂缝的水平及垂直活动特征,及其与降水量的关系。

English Abstract

杨成生, 张勤, 赵超英, 季灵运. 短基线集InSAR技术用于大同盆地地面沉降、地裂缝及断裂活动监测[J]. 武汉大学学报 ● 信息科学版, 2014, 39(8): 945-950. doi: 10.13203/j.whugis20130656
引用本文: 杨成生, 张勤, 赵超英, 季灵运. 短基线集InSAR技术用于大同盆地地面沉降、地裂缝及断裂活动监测[J]. 武汉大学学报 ● 信息科学版, 2014, 39(8): 945-950. doi: 10.13203/j.whugis20130656
YANG Chengsheng1 ZHANG Qin1 ZHAO Chaoying1, JI Lingyun2, . Small Baseline Bubset InSAR Technology Used in Datong Basin GroundSubsidence,Fissure and Fault Zone Monitoring[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8): 945-950. doi: 10.13203/j.whugis20130656
Citation: YANG Chengsheng1 ZHANG Qin1 ZHAO Chaoying1, JI Lingyun2, . Small Baseline Bubset InSAR Technology Used in Datong Basin GroundSubsidence,Fissure and Fault Zone Monitoring[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8): 945-950. doi: 10.13203/j.whugis20130656
参考文献 (1)

目录

    /

    返回文章
    返回