引用本文: 郭庆胜, 冯代鹏, 刘远刚, 陈勇. 一种解算空间几何对象的最小外接矩形算法[J]. 武汉大学学报 ( 信息科学版), 2014, 39(2): 177-180.
GUO Qingsheng, FENG Daipeng, LIU Yuangang, CHEN Yong. An Algorithm for Computing the Smallest-Area EnclosingRectangle of Spatial Geometric Object(s)[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2): 177-180.
 Citation: GUO Qingsheng, FENG Daipeng, LIU Yuangang, CHEN Yong. An Algorithm for Computing the Smallest-Area EnclosingRectangle of Spatial Geometric Object(s)[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2): 177-180.

## An Algorithm for Computing the Smallest-Area EnclosingRectangle of Spatial Geometric Object(s)

• 摘要: 目的 提出并实现了一种解算点群、线群以及面群最小外接矩形的新算法。首先将求解点群、线群以及面群的最小外接矩形问题全部转化为求解构成这些几何对象的边界点集合凸壳的最小外接矩形问题;其次,在算法中采用几何计算方法直接得到矩形的4个顶点坐标,避免了大量旋转角度计算和坐标变换运算,从而降低了算法的计算量,提高了算法的精确度。最后通过实例验证了该算法的可行性。

Abstract: Objective In this paper,a new algorithm is given for computing the smallest-area enclosing rectangle ofpoints,lines and polygons.First,the problem of calculating the smallest-area enclosing rectangle for points,lines and polygons is converted to the problem of computing the smallest-area enclosing rectangle for theirconvex hull.Secondly,the four points of the rectangle for a convex hull are computed by geometric computa-tion.The computation of many angles of rotation and coordinate transformations is avoided in order toimprove the precision.Finally,the new algorithm is verified with some examples.

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈