软件模块故障倾向预测方法研究
Fault-proneness Prediction of Software Modules
-
摘要: 研究了在区分故障严重程度下的软件模块故障倾向预测方法,将故障分为高严重程度和低严重程度两种类型,用统计分析和机器学习方法分析静态代码度量与故障倾向之间的关系。以公开和私有两种类型的失效数据集作为实验数据,分析发现,故障的严重程度影响预测性能,预测不同严重程度的故障需要选择不同的度量和分类模型,预测低严重程度故障的性能好于预测高严重程度故障的性能。Abstract: Utilizing a public dataset and a private dataset,we employed the statistics analysis and machine learning methods to empirically investigate the relation between static code metrics and the proneness of software modules.We conclude that fault severity impacts the performance of fault-proneness prediction,and we should take the fault severity into account when choosing appropriate metrics and classification models.We also conclude that the performance of prediction for low severity faults is better than the high severity faults.