一种基于数据的核优化新方法

A New Data-dependent Kernel Intelligent Optimization Method

  • 摘要: 针对核优化问题进行了研究,给出了一种基于数据的智能核优化新方法。算法利用UCI数据和美国实测合成孔径雷达图像数据进行仿真实验,结果验证了该方法的有效性和可行性。

     

    Abstract: In order to deal with the kernel optimization,a new intelligent data-dependent optimizing kernel method is proposed.In this scheme,a new kernel cluster balanced K-means is firstly presented,which can effectively overcome the singularity of matrix for Mahalanobis distance in local Fisher criterion(KO-LKFC).Then,the total objective function based on local Fisher criterion is given.Finally,genetic algorithm is used to find the global optimization and the intelligence is improved.Experimental results based on UCI data and the MSTAR SAR data show that it is effective and feasible.

     

/

返回文章
返回