Wide-Swath InSAR Geodesy and Its Applications to Large-Scale Deformation Monitoring
-
摘要: 随着人们对大尺度地形信息与地表环境变化监测需求的提升,以及哨兵1号(Sentinel-1A)、大地2号(ALOS-2)等合成孔径雷达(synthetic aperture radar,SAR)卫星的宽幅模式数据不断获取,宽幅雷达干涉测量(SAR interferometry,InSAR)技术已成为大尺度地形测绘、地球动力学(地震、火山、滑坡等)与人工地物结构健康监测等领域的研究热点。分析了两类宽幅SAR数据,即扫描(ScanningSAR,ScanSAR)模式与逐行扫描地形观测(terrain observation by progressive scans SAR,TOPSAR)模式开展干涉测量的主要限制条件与解决方法,探讨了宽幅InSAR形变监测关键误差估计与改正方法、时间序列分析技术与方位向位移观测技术,并给出2008年矩震级Mw 7.1新疆于田地震同震、震后形变监测应用。随着宽幅SAR数据的不断积累,宽幅InSAR大地测量学有望得到深入发展与应用。Abstract: The increasing demands for large-scale terrain information and land surface environmental change monitoring, as well as increasing availability of wide-swath (WS) SAR (Synthetic Aperture Radar) data acquisitions from the Sentinel-1A and ALOS-2, WS InSAR (SAR Interferometry) technology has made InSAR a hot research topic in the fields of large-scale topographic surveying and mapping, Geodynamics (earthquakes, volcanoes, landslides, etc.) and structural monitoring, . In this paper, on the basis of our existing research and the recent research achievements, we review the two kinds of WS SAR acquisition geometries, ScanSAR (Scanning SAR) mode and TOPS (Terrain Observation by Progressive Scans) mode, and analyze the main limitations and solutions in InSAR applications. We investigate the key sources of error in deformation monitoring, WS InSAR time series analysis methods, azimuth displacement observation methods, and the applications of coseismic and postseismic crustal deformation monitoring during the 2008 Mw7.1 Yutian Earthquake. We end with a discussion of the next generation high resolution WS SAR satellite and summarize trends in WS InSAR. With continuous data acquisition, WS InSAR Geodesy will achieve in-depth development.
-
Keywords:
- SAR interferometry /
- space geodesy /
- crustal deformation /
- ScanSAR /
- TOPSAR /
- WS InSAR
-
致谢: 感谢梁存任和冯万鹏博士在宽幅干涉测量和同震建模等过程提供的帮助;感谢欧空局(ESA Category-1 Project: 8690) 提供的ScanSAR数据。
-
-
[1] 李永生, 张景发, 李振洪, 等.利用短基线集干涉测量时序分析方法监测北京市地面沉降[J].武汉大学学报·信息科学版, 2013, 38(11):1374-1377 http://ch.whu.edu.cn/CN/abstract/abstract2813.shtml Li Yongsheng, Zhang Jingfa, Li Zhenhong, et al. Land Subsidence in Beijing City from InSAR Time Series Analysis with Small Baseline Subset[J]. Geomatics and Information Science of Wuhan University, 2013, 38(11):1374-1377 http://ch.whu.edu.cn/CN/abstract/abstract2813.shtml
[2] 何平, 许才军, 温扬茂, 等.利用PALSAR数据研究长白山火山活动性[J].武汉大学学报·信息科学版, 2015, 40(2):214-221 http://ch.whu.edu.cn/CN/abstract/abstract3425.shtml He Ping, Xu Caijun, Wen Yangmao, et al. Estimating the Magma Activity of the Changbaishan Vocano with PALSAR Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(2):214-221 http://ch.whu.edu.cn/CN/abstract/abstract3425.shtml
[3] 杨成生, 张勤, 赵超英, 等.短基线集InSAR技术用于大同盆地地面沉降、地裂缝及断裂活动监测[J].武汉大学学报·信息科学版, 2014, 39(8):945-950 http://ch.whu.edu.cn/CN/abstract/abstract3049.shtml Yang Chengsheng, Zhang Qin, Zhao Chaoying, et al. Small Baseline Bubset InSAR Technology Used in Datong Basin Ground Subsidence, Fissure and Fault Zone Monitoring[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8):945-950 http://ch.whu.edu.cn/CN/abstract/abstract3049.shtml
[4] 许才军, 何平, 温扬茂, 等.利用CR-InSAR技术研究鲜水河断层地壳形变[J].武汉大学学报·信息科学版, 2012, 37(3):302-305 http://ch.whu.edu.cn/CN/abstract/abstract137.shtml Xu Caijun, He Ping, Wen Yangmao, et al. Crustal Deformation Monitoring of Xianshuihe Fault by CR-InSAR[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3):302-305 http://ch.whu.edu.cn/CN/abstract/abstract137.shtml
[5] Tomiyasu K. Conceptual Performance of a Satellite Borne Wide Swath Synthetic Aperture Radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 1981, GE-19(2):108-116 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4157222
[6] Buckley S M, Gudipati K. Evaluating ScanSAR Interferometry Deformation Time Series Using Bursted Stripmap Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6):2335-2342 doi: 10.1109/TGRS.2010.2102360
[7] Lindsey E O, Natsuaki R, Xu X, et al. Line-of-Sight Displacement from ALOS-2 Interferometry:Mw 7.8 Gorkha Earthquake and Mw 7.3 Aftershock[J]. Geophysical Research Letters, 2015, 42(16):6655-6661 doi: 10.1002/2015GL065385
[8] Zan F D, Guarnieri A M. TOPSAR:Terrain Observation by Progressive Scans[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9):2352-2360 doi: 10.1109/TGRS.2006.873853
[9] Prats-Iraola P, Scheiber R, Marotti L, et al. TOPS Interferometry with TerraSAR-X[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, PP(99):1-10 http://ieeexplore.ieee.org/document/6130599/
[10] Yague-Martinez N, Prats-Iraola P, Rodriguez Gonzalez F, et al. Interferometric Processing of Sentinel-1 TOPS Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 99:1-15 http://ieeexplore.ieee.org/document/7390052/
[11] González P J, Bagnardi M, Hooper A J, et al. The 2014-2015 Eruption of Fogo Volcano:Geodetic Modeling of Sentinel-1 TOPS Interferometry[J]. Geophysical Research Letters, 2015, 42(21):9239-9246 doi: 10.1002/2015GL066003
[12] Feng W, Lindsey E, Barbot S, et al. Source Characteristics of the 2015 MW 7.8 Gorkha Earthquake and Its MW 7.2 Aftershock from Space Geodesy[J]. Tectonophysics, 2016, 713(126972):1-12
[13] Elliott J R, Jolivet R, Gonzalez P J, et al. Himalayan Megathrust Geometry and Relation to Topography Revealed by the Gorkha Earthquake[J]. Nature Geoscience, 2016, 9(2):174-180 doi: 10.1038/ngeo2623
[14] Tong X, Sandwell D T, Fialko Y. Coseismic Slip Model of the 2008 Wenchuan Earthquake Derived from Joint Inversion of InSAR GPS and Field Data[J]. Journal of Geophysical Research, 2010, 115:1-19
[15] Guarnieri A M, Rocca F. Combination of Low-and High-Resolution SAR Images for Differential Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(4):2035-2049 doi: 10.1109/36.774714
[16] Rosich B, Monti-Guarnieri A, D'Aria D, et al. ASAR Wide Swath Mode Interferometry:Optimisation of the Scan Pattern Synchronization[C]. The Envisat Symposium(ESA SP-636), Montreux, Switzerland, 2007
[17] Prats-Iraola P, Nannini M, Scheiber R, et al. Sentinel-1 Assessment of the Interferometric Wide-Swath Mode[C]. IGARSS 2015, Milan, Italy, 2015
[18] Ducret G, Doin M P, Grandin R, et al. DEM Corrections Before Unwrapping in a Small Baseline Strategy for InSAR Time Series Analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(3):696-700 doi: 10.1109/LGRS.2013.2276040
[19] Prats-Iraola P, Rodriguez-Cassola M, De Zan F, et al. Role of the Orbital Tube in Interferometric Spaceborne SAR Missions[J]. IEEE Geosience and Remote Sensing Letters, 2015, 12(7):1486-1490 doi: 10.1109/LGRS.2015.2409885
[20] Jolivet R, Agram P S, Lin N Y, et al. Improving InSAR Geodesy Using Global Atmospheric Models[J]. Journal of Geophysical Research:Solid Earth, 2014, 119(3):2324-2341 doi: 10.1002/2013JB010588
[21] Li Z H, Pasquali P, Cantone A, et al. MERIS Atmospheric Water Vapor Correction Model for Wide Swath Interferometric Synthetic Aperture Radar[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(2):257-266 doi: 10.1109/LGRS.2011.2166053
[22] Marinkovic P, Larsen Y. Consequences of Long-Term ASAR Local Oscillator Frequency Decay-An Empirical Study of 10 Years of Data[C]. Living Planet Symposium, Edinburgh, UK, 2013
[23] Spaans K, Hreinsdóttir S, Hooper A, et al. Crustal Movements due to Iceland's Shrinking Ice Caps Mimic Magma Inflow Signal at Katla Volcano[J]. Scientific Reports, 2015, 5:10285 doi: 10.1038/srep10285
[24] De Zan F, Prats-Iraola P, Scheiber R, et al. Interferometry with TOPS:Coregistration and Azimuth Shifts[C]. The 10th European Conference on Synthetic Aperture Radar, Berlin, Germary, 2014
[25] Guarnieri A M. ScanSAR Interferometric Monitoring using the PS Technique[C]. The ERS-ENVISAT Symposium, Gothenburg, Sweden, 2000
[26] Pepe A, Bertran Ortiz A, Lundgren P R, et al. The Stripmap-ScanSAR SBAS Approach to Fill Gaps in Stripmap Deformation Time Series with ScanSAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(12):4788-4804 doi: 10.1109/TGRS.2011.2167979
[27] 李鹏, 宽幅InSAR观测阿尔金断裂带西段震间应变累积的研究[D]. 武汉: 武汉大学, 2013 Li Peng. Interseismic Strain Accumulation across the Western Altyn Tagh Fault from the Wide-Swath InSAR Observations[D]. Wuhan:Wuhan University, 2013
[28] Pagli C, Wang H, Wright T J, et al. Current Plate Boundary Deformation of the Afar Rift from a 3-D Velocity Field Inversion of InSAR and GPS[J]. Journal of Geophysical Research:Solid Earth, 2014, 119(11):2014JB011391
[29] Wegmüller U, Werner C, Strozzi T, et al. Sentinel-1 Support in the GAMMA Software[C]. ESA FRINGE 2015 Workshop, ESA-ESRIN, Frascati, Rome, Italy, 2015
[30] Jung H S, Lu Z, Zhang L. Feasibility of Along-Track Displacement Measurement from Sentinel-1 Interferometric Wide-Swath Mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1):573-578 doi: 10.1109/TGRS.2012.2197861
[31] Scheiber R, Jager M, Prats P-Iraola, P, et al. Speckle Tracking and Interferometric Processing of TerraSAR-X TOPS Data for Mapping Nonstationary Scenarios[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 99:1-12 http://ieeexplore.ieee.org/document/6926747/
[32] Elliott J R, Walters R J, England P C, et al. Extension on the Tibetan Plateau:Recent Normal Faulting Measured by InSAR and Body Wave Seismology[J]. Geophysical Journal International, 2010, 183(2):503-535 doi: 10.1111/j.1365-246X.2010.04754.x
[33] Bie L, Ryder I. Recent Seismic and Aseismic Activity in the Ashikule Stepover Zone, NW Tibet[J]. Geophysical Journal International, 2014, 198(3):1632-1643 doi: 10.1093/gji/ggu230
[34] Gebert N, Krieger G, Moreira A. Digital Beamforming on Receive:Techniques and Optimization Strategies for High-Resolution Wide-Swath SAR Imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2):564-592 doi: 10.1109/TAES.2009.5089542
[35] Villano M, Krieger G, Moreira A. Staggered SAR:High-Resolution Wide-Swath Imaging by Continuous PRI Variation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7):4462-4479 doi: 10.1109/TGRS.2013.2282192
[36] Moreira A, Krieger G, Hajnsek I, et al. Tandem-L:A Highly Innovative Bistatic SAR Mission for Global Observation of Dynamic Processes on the Earth's Surface[J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3(2):8-23 doi: 10.1109/MGRS.2015.2437353