留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一等三角测量测站系统误差的数学模型

朱圣源

朱圣源. 一等三角测量测站系统误差的数学模型[J]. 武汉大学学报 ● 信息科学版, 1980, 5(2): 40-45.
引用本文: 朱圣源. 一等三角测量测站系统误差的数学模型[J]. 武汉大学学报 ● 信息科学版, 1980, 5(2): 40-45.
Zhu Shengyuan. Mathematical Model for Systematic Error in the First Order Triangulation Stations[J]. Geomatics and Information Science of Wuhan University, 1980, 5(2): 40-45.
Citation: Zhu Shengyuan. Mathematical Model for Systematic Error in the First Order Triangulation Stations[J]. Geomatics and Information Science of Wuhan University, 1980, 5(2): 40-45.

一等三角测量测站系统误差的数学模型

Mathematical Model for Systematic Error in the First Order Triangulation Stations

计量
  • 文章访问数:  431
  • HTML全文浏览量:  36
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 刊出日期:  1980-02-05

一等三角测量测站系统误差的数学模型

摘要: 按史赖伯测角法或全组合测角法,在测站平差后理应得到一组独立的方向观测值,但由于旁折光等系统误差的影响,使方向实际不独立。根据误差源的物理几何性质及根据数理统计原理,得出相邻方向间的相关系数为ρi,j=cos(i,j)/1+K,测角中误差为mα=0".55√1-1/1+Kcosα/1-1/2(1+K)。其中α为该角的大小,K为偶然误差与系统误差的均方值之比。对我国K为0.9左右。这一系统误差的存在,使测角中误差与角的大小有关,使大角中误差大,这也正是导线测角中误差大于三角网(锁)测角中误差的原因。这个系统误差也正是地面经典光学测角法精度难以进一步提高的主要原因。最后给出角度(及方向)的相关权矩阵模型。从模型知,以角度或方向作为独立量进行平差都是真实情况的近似。

English Abstract

朱圣源. 一等三角测量测站系统误差的数学模型[J]. 武汉大学学报 ● 信息科学版, 1980, 5(2): 40-45.
引用本文: 朱圣源. 一等三角测量测站系统误差的数学模型[J]. 武汉大学学报 ● 信息科学版, 1980, 5(2): 40-45.
Zhu Shengyuan. Mathematical Model for Systematic Error in the First Order Triangulation Stations[J]. Geomatics and Information Science of Wuhan University, 1980, 5(2): 40-45.
Citation: Zhu Shengyuan. Mathematical Model for Systematic Error in the First Order Triangulation Stations[J]. Geomatics and Information Science of Wuhan University, 1980, 5(2): 40-45.

目录

    /

    返回文章
    返回