基于移动开窗法协方差估计和方差分量估计的自适应滤波

杨元喜, 徐天河

杨元喜, 徐天河. 基于移动开窗法协方差估计和方差分量估计的自适应滤波[J]. 武汉大学学报 ( 信息科学版), 2003, 28(6): 714-718.
引用本文: 杨元喜, 徐天河. 基于移动开窗法协方差估计和方差分量估计的自适应滤波[J]. 武汉大学学报 ( 信息科学版), 2003, 28(6): 714-718.
YANG Yuanxi, XU Tianhe. An Adaptive Kalman Filter Combining Variance Component Estimation with Covariance Matrix Estimation Based on Moving Window[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 714-718.
Citation: YANG Yuanxi, XU Tianhe. An Adaptive Kalman Filter Combining Variance Component Estimation with Covariance Matrix Estimation Based on Moving Window[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 714-718.

基于移动开窗法协方差估计和方差分量估计的自适应滤波

基金项目: 国家杰出青年基金资助项目(49825107);国家自然科学基金资助项目(40174009,40274002)
详细信息
    作者简介:

    杨元喜,教授,博士生导师。现主要从事动态大地测量数据处理理论研究,已发表论文140余篇,出版专著和合著4部。E-mail:yuanxi@pub.xaonline.com

  • 中图分类号: P207.2

An Adaptive Kalman Filter Combining Variance Component Estimation with Covariance Matrix Estimation Based on Moving Window

  • 摘要: 基于移动窗口协方差估计和方差分量估计,提出了一种新的自适应Kalman滤波技术。计算结果证实,该方法能有效地控制观测异常和载体状态扰动异常对动态系统参数估值的影响。
    Abstract: An adaptive filtering based on moving window covariance estimation is introduced after the shortcomings of covariance matrices formed by windowing residual vectors,innovation vectors and correction vectors of the dynamic states are analyzed.A new adaptive Kalman filter is developed by combining the moving window covariance and the variance component estimation.It shows that the new adaptive filtering is not only simple in calculation but also robust in controlling the measurement outliers and kinematic state disturbance.
计量
  • 文章访问数:  1231
  • HTML全文浏览量:  93
  • PDF下载量:  438
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-09-04
  • 发布日期:  2003-06-04

目录

    /

    返回文章
    返回