基于多传感器观测信息抗差估计的自适应融合导航

杨元喜, 高为广

杨元喜, 高为广. 基于多传感器观测信息抗差估计的自适应融合导航[J]. 武汉大学学报 ( 信息科学版), 2004, 29(10): 885-888.
引用本文: 杨元喜, 高为广. 基于多传感器观测信息抗差估计的自适应融合导航[J]. 武汉大学学报 ( 信息科学版), 2004, 29(10): 885-888.
YANG Yuanxi, GAO Weiguang. Integrated Navigation Based on Robust Estimation Outputs of Multi-sensor Measurements and Adaptive Weights of Dynamic Model Information[J]. Geomatics and Information Science of Wuhan University, 2004, 29(10): 885-888.
Citation: YANG Yuanxi, GAO Weiguang. Integrated Navigation Based on Robust Estimation Outputs of Multi-sensor Measurements and Adaptive Weights of Dynamic Model Information[J]. Geomatics and Information Science of Wuhan University, 2004, 29(10): 885-888.

基于多传感器观测信息抗差估计的自适应融合导航

基金项目: 国家杰出青年基金资助项目(49825107);国家自然科学基金资助项目(40174009;40274002)。
详细信息
    作者简介:

    杨元喜,研究员,博士,博士生导师。现从事动态大地测量和大地测量数据处理研究,共发表学术论文140余篇。E-mail:yuanxi@pub.xaonline.com

  • 中图分类号: P207

Integrated Navigation Based on Robust Estimation Outputs of Multi-sensor Measurements and Adaptive Weights of Dynamic Model Information

  • 摘要: 首先利用抗差估计原理构造了基于观测信息的融合导航解,再利用动力学模型信息进行自适应融合,最后利用模拟算例进行多种方案的计算与比较。
    Abstract: In order to control the influences of outlying measurements and the kinematic model errors on the integrated navigation results, a robust estimation method and an adaptive data fusion method are applied. The new integrated navigation procedure is different from the federated Kalman filtering in four aspects. A three-segment robust weight function is introduced to construct the equivalent weight matrices for all local sensor measurement vectors, and an existing adaptive factor is directly applied to balance the contribution of kinematic model information and the preliminary integrated navigation result from the robust local sensor outputs. The calculation structure is given. An integrated navigation example using simulated data is illustrated in which three calculation schemes are performed.
计量
  • 文章访问数:  835
  • HTML全文浏览量:  46
  • PDF下载量:  276
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-04-30
  • 发布日期:  2004-10-04

目录

    /

    返回文章
    返回