基于神经网络模型求取注记配置最优解
A Hopfield Nerual Network Algorithm of Finding the Best Position for Point Annotation of Map
-
摘要: 提出了一种点状注记自动配置的实用方法。其核心算法采用基于Hopfield神经网络模型求取点要素注记配置的最优解,克服了传统的冲突-回溯方法的不足。实验证明,该方法具有较好的性能和效率。Abstract: This paper presents a method of adding annotation to the map especially for the point feature.This method overcomes the shortcoming of traditional methods e.g.Conflict Tracebacking method.It's kernel algorithm that use the Hopfileld neural network to find the best position of feature annotation.The experimental results of running in HP workstation prove that this algorithm has a fairy permanence and high speed.