计算Stokes公式的快速Hartley变换(FHT)技术
A Fast Hartley Transform Techniques of Computing Stokes Formula
-
摘要: 本文提出了利用快速Hartley变换(FHT)计算Stokes公式的方法,这-算法最适合于用来计算实序列的积分变换,而快速Fourier变换(FFT)较适合于用来计算复序列的积分变换。计算Stokes公式只涉及实序列问题,用FHT计算Stokes公式比用FFT算法更有效。本文详细地描述了用FHΥ计算Stokes公式的算法,进行了数值计算,与相应的FFT计算结果作了比较。结果表明,两种算法可以得到相同的精度,但是,FHT的计算速度比FFT的计算速度快-倍以上,且所需要的内存空间只是后者的-半。Abstract: This paper presents a new method for the computation of the Stokes formula using the Fast Hartley Transform(FHT) techniques. The algorithm is most suitable for the computation of real sequence transform, but the Fast Fourier Transform (FFT) techniques is more suitable for the computation of complex sequece transform. The solution of Stokes formula is, however, only associated with a real sequence problem. Therefore the computation of the Stokes formula using FHT techniques is more efficient than using FFT techniques. The procedures of the evaluation of the Stokes formula by FHT techniques are described in detail and correspondingly, some numerical tests are given. By the comparison with both FFT techniques and numerical integration method, the results show that the resulting values of geoidal undulations by FHT techniques are almost the same as by FFT techniques, and the computational speed of FHT technique is about two times faster than that FFT techniques.