引用本文: 吕荣峰. 正交三角分解法及其在光束法平差中的应用[J]. 武汉大学学报 ( 信息科学版), 1988, 13(3): 105-114.
Lü. Orthogonal-Triangular Decomposition and Its Application in Bundle Adjustment[J]. Geomatics and Information Science of Wuhan University, 1988, 13(3): 105-114.
 Citation: Lü. Orthogonal-Triangular Decomposition and Its Application in Bundle Adjustment[J]. Geomatics and Information Science of Wuhan University, 1988, 13(3): 105-114.

## Orthogonal-Triangular Decomposition and Its Application in Bundle Adjustment

• 摘要: 本文首先阐述了正交三角分解法的基本原则,针对光束法平差中设计矩阵的特点,讨论了使用正交三角分解法解算光束法平差的有关问题。该方法最明显的优点在于,较好地解决了"多余观测分量的严密快速计算"问题,使Qⅴⅴ计算变得非常简单。此外,该方法的数字计算精度及解算速度也优于目前人们所用的方法。最后给出几个算例及几点结论。

Abstract: This paper first introduces the principle of the algorithm——orthogonal-Trhngular Decomposition (OTD). Then it discusses some problems encountered when using OTD in bundIe adjustment with special reference to the characteristics of the design matrix. One of the obvious advantages of OTD is the good solution of the problem "strict and fast calculation of redundancy bunrbers", which has hitherto aroused much attention. OTD has greatly simplified the calculation of Qⅴⅴ elements. It is superior to the other algorithms in numerical stability and calculation time. The results of a set of tests show that the OTD is a valuable algorithm.

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈