车载立方体全景影像匹配点的粗差检测方法

A Gross Error Detection Method of Vehicle-borne Cubic Panoramic Image Se quence

  • 摘要: 针对低匹配内点率情况利用随机抽样一致性算法RANSAC估计车载全景序列影像的极几何模型不稳定造成大量匹配点的粗差无法检测或误检测问题提出了一种基于多约束条件的粗差检测方法 以冗余粗差为约束条件采用SIFT和最近邻匹配方法获取独立随机匹配点并构建特征光流矢量 利用光流幅度和方向直方图统计结果融合极线尺度和天空点约束条件实现全景影像匹配点的粗差检测 通过不同数据的实验分析在短基线条件下可以有效地检测出大部分由纹理重复性尺度变化和运动物体产生的匹配粗差点 与传统方法比较本文方法可获得更高的匹配正确点数和正确率尤其在场景复杂造成的低内点率情况下算法表现较为稳定 

     

    Abstract: Because the  epipolar  geometr y model estimation of  panoramic  images  is  unstable under  the low match inlier  ratio  caseslar ge numbers of  outliers or  errors  cannot  be detected using RANSAC method.A new gross  error  detection method based on multiple  constraints  is  presented  for  vehicleborne panoramic  image se quences.Firstthe  initial matching points  are  extracted using SIFT and nearest  nei ghbor matchingthen  inde pendent  random matching points  are  constructed by redundant  gross error  constraints.Secondthe movement relationshi ps between panoramic  images  are  approximatel y expressed by the histo gram statistics  of  optical  flow magnitude  and direction which can effectivel y improve  the matching inlier  ratio.Finall ythe  epipolar  geometric  constraintscale  constraint  and sky point  constraint  are  used  for  gross  error  detection.Several  panoramic  images were selected  and used for  experiments.An  anal ysis  and comparison were carried out on these data.The  results  show that the proposed method works well  in  short-baseline conditions  for  the number and accurac y of  correct matching pointses peciall y for  complex  scenes  in  low  inlier  ratio  cases.The  al gorithm performance  is relativel y stableand provides better  constraint  for  gross  errors  usuall y caused by re peated  textures scale  changesand moving objects.

     

/

返回文章
返回