正交三角函数导出的最小gdop定位构型解集

positioning configurations with minimum gdop from orthogonaltri gonometric functions

  • 摘要: 由正交三角函数导出了一类最小gdop测距单点定位构型集 导出了测距单点定位构型的gdop极小值条件并由此引入了最小gdop测距单点定位构型解集的概念揭示了最小gdop测距单点定位构型的性质 旋转不变性和叠加不变性 对于任意给定的控制点数目n由正交三角函数导出了最小gdop构型的正多边形解 最后在最小gdop二维测距单点定位构型的基础上导出了三种三维最小gdop测距单点定位构型圆锥构型锥角108.48° 笛卡尔构型walker构型轨道倾角54.74° 这些构型的几何条件为讨论gnss星座设计提供了参考

     

    Abstract: in  this papersin gle -point -positioning confi gurations with minimum gdop emplo ying orthogonal  tri gonometric  functions  are  presented.the  preconditions  for minimizing the gdop are  intro-ducedand the  set  composed of  all  confi gurations with minimal gdop is  defined.some properties  ofthe minimum gdop confi gurationsincluding the  invariance  of  rotation and super position are  de-tailed.for  arbitrar y given number n of  control  pointsre gular  pol ygon solutions  are  immediately deduced from the orthogonal  tri gonometric  functions.based on the  two dimensional  confi gurations with minimum gdopthree kinds  of  three dimensional  confi gurations with minimum gdopincluding the cone  confi guration with cone  angle  108.48°the descartes confi gurationand the walker confi gurationwith  inclination  angle  54.74°are  discussed.the  geometrical  conditions  of  these  confi gurations provide  us  some knowledge for gnss constellation design

     

/

返回文章
返回