A Node Localization Method in Wireless Sensor Network Based on K-means Cluster
-
摘要: 针对多源遥感影像间几何变形和灰度差异造成的匹配困难问题,提出一种结合SIFT和边缘信息的影像匹配方法。首先在高斯差分尺度空间进行特征点检测,并采用相位一致性提取可靠的边缘信息;然后结合改进的SIFT和形状上下文对特征点进行描述;最后将欧氏距离和χ2统计作为相似性测度获取同名点。相比于SIFT算法,本文方法可有效地提高匹配正确率,并获得更多的同名点。Abstract: Considering the influence of the environmental difference in the same localization circumstance, we proposes a node localization algorithm based on clustering in this paper. This algorithm can realize nodes clustering by using the RSSI-similarity degree in space environment, and succeed in localization estimation with different model parameters. Experimental results show that the proposed algorithm has a better localization accuracy than some RSSI algorithm.
-
Keywords:
- wireless sensor network /
- node localization /
- cluster analysis /
- RSSI
-
-
[1] 王瑞瑞,马建文,陈雪. 多传感器影像配准中基于虚拟匹配窗口的SIFT算法[J]. 武汉大学学报(信息科学版). 2011(02)[2] 凌志刚,梁彦,程咏梅,潘泉,沈贺. 一种稳健的多源遥感图像特征配准方法[J]. 电子学报. 2010(12)[3] 李芳芳,贾永红,肖本林,张谦. 利用线特征和SIFT点特征进行多源遥感影像配准[J]. 武汉大学学报(信息科学版). 2010(02)[4] 张剑清等编著.摄影测量学[M]. 武汉大学出版社, 2003 [5] David G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints[J]. International Journal of Computer Vision . 2004 (2)
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量: