一种并行计算的流数据Delaunay构网算法

A Streaming Data Delaunay Triangulation Algorithm Based on Parallel Computing

  • 摘要: 提出了一种流数据算法进行Delaunay三角网构网,用来处理上十亿的LiDAR点云数据。该算法基于并行多核处理器架构,将三角网构网的分治算法与流数据处理相结合。一种四叉树结构用来自适应地划分点云数据文件,并将分割构网和合并子网工作动态调度分布到不同处理器,以提高负载均衡。算法通过并行计算,充分利用多核处理器平台的计算能力,取得了高运行效率和低内存占用。

     

    Abstract: This paper presents a streaming data algorithm to execute Delaunay triangulations with large LiDAR point clouds(a billion data points) based on multi-core processor architecture.The algorithm combines divide-and-conquer triangulation with streaming data.A quad-tree structure is used to partition the LiDAR data into subnets adaptively,and schedules triangulation and merging of the subnet data into different processors for load balancing.Parallel computing on multi-core processor architecture makes this algorithm highly efficient with a low memory footprint.

     

/

返回文章
返回