Classification of Full-polarimetric Synthetic Aperture Radar Data with Maximum a Posteriori
-
摘要: 结合后验概率对分类的影响和全极化SAR数据特点,提出了一种全极化SAR数据分类方法。首先将全极化SAR数据的协方差矩阵转换为9个服从正态分布的强度量;然后通过迭代分类计算类别出现的概率,对9个强度量进行基于最大后验概率的分类。以黑龙江省逊克县境内的一景ALOS PALSAR全极化数据为例,用该方法进行分类,总体精度和Kappa系数分别达到81.34%和0.84,优于传统的最大似然分类方法。Abstract: Considering the influence of the posterior and the statistic distributions of full-polarimetric SAR data,we proposed a new classification method of full polarimetric SAR data.First,the covariance matrix of polarization SAR data was converted to nine intensity quantities with normal distribution.Then,the probability of occurance for each class was calculated with iterative initial classification.Finally,the nine intensity images were classified with maximum likelihood classification method taking the probabilities of occurance for the classes into account.We applied the developed method to the ALOS PALSAR full-polarimetric data of Xunke County,Heilongjiang Province.The overall accuracy is 81.34% and the Kappa coefficient 0.84.The developed method showed higher accuracy than that from the traditional maximum likelihood classifier.This indicates that our method can improve the accuracy of classification.
-
Keywords:
- classification /
- SAR /
- radar polarimetry /
- posteriori
-
-
[1] 王贺张路,徐金燕,廖明生,. 面向城市地物分类的L波段SAR影像极化特征提取与分析[J]. 武汉大学学报(信息科学版). 2012(09)[2] 巫兆聪欧阳群东,胡忠文,. 应用分水岭变换与支持向量机的极化SAR图像分类[J]. 武汉大学学报(信息科学版). 2012(01)[3] 陈富龙王超,张红,. 改进最大似然遥感影像分类方法——以SAR影像为例[J]. 国土资源遥感. 2008(01)[4] 刘秀清杨汝良,. 基于全极化SAR非监督分类的迭代分类方法[J]. 电子学报. 2004(12)[5] LIU Jiyuan, LIU Mingliang, DENG Xiangzheng, ZhuangDafang,ZHANG Zengxiang, LUO Di(1. Inst. of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;2. Inst. of Remote Sensing Applications, CAS, Beijing 100101, China). The land use and land cover change database and its relative studies in China[J]. Journal of Geographical Sciences. 2002(03)
计量
- 文章访问数: 1498
- HTML全文浏览量: 73
- PDF下载量: 544