引用本文: 徐新禹, 李建成, 邹贤才, 禇永海. 最小二乘法求解三类卫星重力梯度边值问题的研究[J]. 武汉大学学报 ( 信息科学版), 2006, 31(11): 987-990.
XU Xinyu, LI Jiancheng, ZOU Xiancai, CHU Yonghai. Solving Three Types of Satellite Gravity Gradient Boundary Value Problems by Least-square[J]. Geomatics and Information Science of Wuhan University, 2006, 31(11): 987-990.
 Citation: XU Xinyu, LI Jiancheng, ZOU Xiancai, CHU Yonghai. Solving Three Types of Satellite Gravity Gradient Boundary Value Problems by Least-square[J]. Geomatics and Information Science of Wuhan University, 2006, 31(11): 987-990.

## Solving Three Types of Satellite Gravity Gradient Boundary Value Problems by Least-square

• 摘要: 研究了最小二乘法求解3类卫星重力梯度边值问题的理论和方法,给出了3类梯度观测值Γzz、Γxz、Γyz和Γxx-Γyy,2Γxy对应边值问题解的核函数严密表达式。模拟试算结果表明,最小二乘法求解的卫星重力梯度积分公式用于恢复地球重力场是有效而严密的。

Abstract: The principle and method of solving three types of satellite gravity gradient boundary value problems by least-square are discussed in detail.And the kernel function expressions of least square solution of three geodetic boundary value problems with the observations are presented.From the results of recovery of gravity field using simulated gradient tensor data,a conclusion can be drawn that the satellite gravity gradient integral formula gotten from least square,used for recovering the gravity field,is valid and rigorous.

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈