基于偏最小二乘回归的纹理特征线性组合

金淑英, 李德仁, 龚健雅

金淑英, 李德仁, 龚健雅. 基于偏最小二乘回归的纹理特征线性组合[J]. 武汉大学学报 ( 信息科学版), 2006, 31(5): 399-402.
引用本文: 金淑英, 李德仁, 龚健雅. 基于偏最小二乘回归的纹理特征线性组合[J]. 武汉大学学报 ( 信息科学版), 2006, 31(5): 399-402.
JIN Shuying, LI Deren, GONG Jianya. Linear Combination of Texture Features Based on Partial Least Square Regression[J]. Geomatics and Information Science of Wuhan University, 2006, 31(5): 399-402.
Citation: JIN Shuying, LI Deren, GONG Jianya. Linear Combination of Texture Features Based on Partial Least Square Regression[J]. Geomatics and Information Science of Wuhan University, 2006, 31(5): 399-402.

基于偏最小二乘回归的纹理特征线性组合

详细信息
    作者简介:

    金淑英,博士生。现主要从事遥感图像处理研究。代表成果:遥感图像处理系统eoImager。

  • 中图分类号: P237.3

Linear Combination of Texture Features Based on Partial Least Square Regression

  • 摘要: 基于偏最小二乘回归技术对纹理特征进行线性组合,得到新的纹理特征来进行分类。实验表明,组合后的纹理特征不但提高了纹理分类的性能,而且具有一定的数据自适应能力。
    Abstract: The paper presents partial least squares(PLS) method.Firstly,texture features(spectrum(TS) and gray-level co-occurrence matrix(GLCM)) are calculated from local image regions.Secondly,the authors apply PLS regression to preparatory texture features to extract linear combined new texture features.Thirdly,both the linear combined texture features and the preparatory texture features,together with the ordinary texture features,are imported into linear discrimination analysis(LDA) and quadratic discrimination analysis(QDA).Finally,classification results are compared and conclusions are drawn.The experiments show that not only PLS can reduce the dimension of texture features but also the combined texture features efficiently have better discrimination abilities than the ordinary texture features.
计量
  • 文章访问数:  887
  • HTML全文浏览量:  57
  • PDF下载量:  317
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-02-17
  • 修回日期:  2006-02-17
  • 发布日期:  2006-05-04

目录

    /

    返回文章
    返回