基于支持度矩阵的Apriori改进算法

An Improved Apriori Algorithm Based on Support Count Matrix

  • 摘要: 提出了一种利用支持度矩阵生成频繁项集的Apriori改进算法。通过上三角分块稀疏矩阵的行列性质和非频繁列之间的约束关系,改进的算法避免了Apriori连接步中大量非频繁候选k-项集的产生及其在剪枝步中(k-1)-子集的分解和判断。该算法能够有效地压缩搜索空间,降低Apriori连接和剪枝步骤的开销。

     

    Abstract: An improved Apriori algorithm which uses support count matrix to generate frequent itemsets is proposed.It avoids the generation of a large amount of non-frequent candidate k-itemsets in the join step and the judgments of(k-1)-subset in the prune step by the characteristics of rows and columns in the upper triangular matrix which is partitioned and sparse,and by the restrict relations between non-frequent columns.It effectively compresses the search space and reduces the computational cost of the Apriori algorithm.

     

/

返回文章
返回