顾及上下文信息的混合广义高斯密度模型遥感影像分类方法研究

徐宏根, 马洪超, 宋妍, 贾小霞

徐宏根, 马洪超, 宋妍, 贾小霞. 顾及上下文信息的混合广义高斯密度模型遥感影像分类方法研究[J]. 武汉大学学报 ( 信息科学版), 2008, 33(9): 959-962.
引用本文: 徐宏根, 马洪超, 宋妍, 贾小霞. 顾及上下文信息的混合广义高斯密度模型遥感影像分类方法研究[J]. 武汉大学学报 ( 信息科学版), 2008, 33(9): 959-962.
XU Honggen, MA Hongchao, SONG Yan, JIA Xiaoxia. A Remote Sensing Image Classification Method Based on Generalized Gaussian Mixture Model[J]. Geomatics and Information Science of Wuhan University, 2008, 33(9): 959-962.
Citation: XU Honggen, MA Hongchao, SONG Yan, JIA Xiaoxia. A Remote Sensing Image Classification Method Based on Generalized Gaussian Mixture Model[J]. Geomatics and Information Science of Wuhan University, 2008, 33(9): 959-962.

顾及上下文信息的混合广义高斯密度模型遥感影像分类方法研究

基金项目: 国家“十一五”国防基础科研资助项目(A1420060213)
详细信息
    作者简介:

    徐宏根,博士生。主要从事遥感图像处理研究。

  • 中图分类号: P237.3

A Remote Sensing Image Classification Method Based on Generalized Gaussian Mixture Model

Funds: 国家“十一五”国防基础科研资助项目(A1420060213)
  • 摘要: 提出了一种基于混合广义高斯密度模型(generalize Gaussian mixture model,GGMM),并顾及影像上下文信息的遥感影像分类方法。试验结果表明,该方法具有较强的鲁棒性,分类精度较传统的分类方法要好,在细节保持方面,较某些尺度上的面向对象的分类方法要好。
    Abstract: Generalized Gaussian mixture model(GGMM) is used to classify remote sensing images.The experimental results show that the method can obtain higher accuracy than maximum likelihood classification,and obtain more structure details than eCognition on some scales.
计量
  • 文章访问数:  1047
  • HTML全文浏览量:  58
  • PDF下载量:  363
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-07-12
  • 修回日期:  2008-07-12
  • 发布日期:  2008-09-04

目录

    /

    返回文章
    返回