利用相似性度量的不同比例尺地图数据网状要素匹配算法

Feature Matching from Network Data at Different Scales Based on Similarity Measure

  • 摘要: 提出了一种基于相似性度量的不同比例尺地图数据网状要素匹配算法。首先进行结点、弧段的粗匹配,然后利用结点-弧段拓扑关系的相似性和离散Fréchet距离进行精确匹配,匹配过程将几何、语义、拓扑、结点和弧段匹配有效结合起来,最后以可视化方式将不同匹配结果进行显示,以便人机交互。实验表明,该算法可有效地匹配各种复杂情况下的同名道路,并提高匹配的正确率和速度。

     

    Abstract: An algorithm for feature matching from network data at different map scaled based on similarity measure is presented.The whole strategy of matching is the first pre-matching of nodes and arcs,followed by accurate matching through similarity of node-arc topologies and discrete Fréchet distance.The matching process combines the matches in geometry,semantics,topology,nodes and arcs effectively.Finally,the different matching results are displayed to facilitate the human-computer interaction.The experimental results show that this method can match correspondent roads under complicated conditions effectively,and heighten the correctness and the speed of the feature matching.

     

/

返回文章
返回