Source Parameters and Rapid Simulation of Strong Ground Motion of the Ms6.8 Earthquake on January 7, 2025 in Dingri (Xizang,China) Derived from InSAR Observation
-
摘要:
北京时间2025-01-07,中国西藏自治区日喀则定日县发生了Ms 6.8地震,造成大量人员伤亡。地震发生在青藏高原拉萨地块内部,为快速获取此次地震的发震构造和准确理解震源机制,基于陆探1号(Lutan-1, LT-1)卫星升轨数据和Sentinel-1卫星降轨数据提取了本次地震的同震形变场,并以此作为约束资料对发震断层几何参数和滑动分布进行反演。同震形变场显示,发震地区以垂直变形和东西向伸展变形为主要特征,视线向最大变形量达到了2 m。反演结果表明,此次地震发生于一条走向为187°、倾角为40°的正断层,断层最大位错量达6 m,矩震级达到了Mw 7.1。基于反演断层滑动模型模拟地震烈度,结果显示此次地震最大烈度可达Ⅸ度。综合使用InSAR地震同震形变场和两步法断层参数反演算法快速获取地震震源机制和破裂参数,可为地震应急救援、烈度估算和震害分析等提供快速准确的数据支持。
Abstract:ObjectivesOn January 7, 2025, an Ms 6.8 earthquake struck Dingri County, Shigatse City, Xizang Autonomous Region,China, resulting in numerous casualties. This earthquake took place within the Lhasa block of the Qinghai-Tibet Plateau. To swiftly ascertain the seismogenic structure of this earthquake and gain a precise understanding of its source mechanism, this study utilized ascending data from the Lutan-1 (LT-1) satellite and descending data from the Sentinel-1 satellite to extract surface coseismic deformation.
MethodsThis deformation data served as constraint information for the inversion of geometric parameters and slip distribution of the seismogenic fault.
ResultsThe findings reveal that the earthquake-affected areas primarily exhibited near east-west extension deformation, with the maximum deformation in the line of sight direction attaining 2 m. The inversion outcomes demonstrate that the earthquake occurred on a normal fault with a strike of 187° and a dip angle of 40°, exhibiting a maximum slip of 6 m and a simulated moment magnitude of 7.1. By simulating earthquake intensity based on the estimated fault slip model, it was found that the maximum intensity of this earthquake could reach level Ⅸ.
ConclusionsThe integrated application of interferometry synthetic aperture radar seismic coseismic deformation field and a two-step fault parameter inversion algorithm achieved a rapid acquisition of the earthquake's source mechanism and rupture parameters. This approach offers swift and precise data support for earthquake emergency response, intensity estimation, and damage analysis.
-
Keywords:
- Dingri earthquake /
- InSAR inversion /
- coseismic deformation /
- focal mechanism /
- strong ground motion
-
http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20250022
-
-
[1] 中国新闻网. 最新:西藏定日县地震已致126人遇难[OL]. https://mp.weixin.qq.com/s/htgnfCsmDhQwYeztT8mrIA, 2025. China News Service. Latest: Earthquake in Dingri County, Xizang has Resulted in 126 Fatalities[OL]. https://mp.weixin.qq.com/s/htgnfCsmDhQwYeztT8mrIA, 2025.
[2] 中国地震局地球物理研究所. 2025年1月7日西藏定日6.8级地震的震源特征[OL]. https://mp.weixin.qq.com/s/-nRSfgMCb5b6UU_OqDoB2w,2025. Institute of Geophysics, China Earthquake Administration. Source Characteristics of the Ms 6.8 Earthquake in Dingri, Xizang on January 7, 2025[OL]. https : //mp.weixin.qq.com/s/-nRSfgMCb5b6UU_OqDoB2w,2025.
[3] 中国地震灾害防御中心. 2025年1月7日西藏定日6.8级地震发生的地质构造背景[OL]. https://mp.weixin.qq.com/s/R98iqfLIwW_fAEjb5roe7g,2025. China Earthquake Disaster Prevention Center. Geological Structural Background of the Ms 6.8 Earthquake in Dingri, Xizang on January 7, 2025[OL]. https://mp.weixin.qq.com/s/R98iqfLIwW_fAEjb5roe7g,2025.
[4] ZEBKER H A, ROSEN P A,Goldstein R M,et al.On the Derivation of Coseismic Displacement Fields Using Differential Radar Interferometry:The Landers Earthquake[C]// Journal of Geophysical Research: Solid Earth, 1994, 99(B10): 19617-19634.
[5] BAMLER R,HARTL P. Synthetic Aperture Radar Interferometry[J].Inverse Problems, 1998, 14(4): R1.
[6] LI Z H, ELLIOTT J R, FENG W P, et al. The 2010 Mw 6.8 Yushu (Qinghai, China) Earthquake: Constraints Provided by InSAR and Body Wave Seismology[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B10): B10302.
[7] 李永生, 申文豪, 温扬茂, 等. 2015年尼泊尔Mw 7.8地震震源机制InSAR反演及强地面运动模拟[J]. 地球物理学报, 2016, 59(4): 1359-1370. LI Yongsheng, SHEN Wenhao, WEN Yangmao, et al. Source Parameters for the 2015 Nepal Earthquake Revealed by InSAR Observations and Strong Ground Motion Simulation[J]. Chinese Journal of Geophysics, 2016, 59(4): 1359-1370.
[8] 李振洪, 韩炳权, 刘振江, 等. InSAR数据约束下2016年和2022年青海门源地震震源参数及其滑动分布[J]. 武汉大学学报(信息科学版), 2022, 47(6): 887-897. LI Zhenhong, HAN Bingquan, LIU Zhenjiang, et al. Source Parameters and Slip Distributions of the 2016 and 2022 Menyuan, Qinghai Earthquakes Constrained by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 887-897.
[9] 吴珍汉, 胡道功, 吴中海, 等. 青藏高原中段活动断层运动速度及驱动机理[J]. 地球学报, 2005, 26(2): 99-104. WU Zhenhan, HU Daogong, WU Zhonghai, et al. Slip Rates and Driving Mechanism of Active Faults in Middle Tibetan Plateau[J]. Acta Geosicientia Sinica, 2005, 26(2): 99-104.
[10] 黄婷, 吴中海, 韩帅, 等. 西藏日喀则地区的活断层基本特征及地震灾害潜在风险评估[J]. 地震科学进展, 2024, 54(10): 696-711. HUANG Ting, WU Zhonghai, HAN Shuai, et al. The Basic Characteristics of Active Faults in the Region of Xigaze, Xizang and the Assessment of Potential Earthquake Disaster Risks[J]. Progress in Earthquake Sciences, 2024, 54(10): 696-711.
[11] LIN H Y, DENG Y K, ZHANG H, et al. On the Processing of Dual-Channel Receiving Signals of the Lutan-1 SAR System[J]. Remote Sensing, 2022, 14(3): 515.
[12] 李永生, 李强, 焦其松, 等. 陆地探测一号SAR卫星星座在地震行业的应用与展望[J]. 武汉大学学报(信息科学版), 2024, 49(10): 1741-1752. LI Yongsheng, LI Qiang, JIAO Qisong, et al. Application of Lutan-1 SAR Satellite Constellation to Earthquake Industry and Its Prospect[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1741-1752.
[13] 中国地震局. 地质所、四川局、西藏局联合调查团队发现定日地震的同震垂直位错量达3 m[OL]. https://mp.weixin.qq.com/s/qtB9yU9E6TlfQ4HrF5Hybw,2025. China Earthquake Administration. The Joint Investigation Team from the Institute of Geology, Sichuan Bureau, and Xizang Bureau Found that the Coseismic Vertical Displacement of the Dingri Earthquake Reached 3 m[OL]. https://mp.weixin.qq.com/s/qtB9yU9E6TlfQ4HrF5Hybw,2025.
[14] 冯万鹏, 李振洪. InSAR资料约束下震源参数的PSO混合算法反演策略[J]. 地球物理学进展, 2010, 25(4): 1189-1196. FENG Wanpeng, LI Zhenhong. A Novel Hybrid PSO/Simplex Algorithm for Determining Earthquake Source Parameters Using InSAR Data[J]. Progress in Geophysics, 2010, 25(4): 1189-1196.
[15] 张庆云, 李永生, 罗毅, 等. 2016年意大利阿马特里切Mw 6.2地震震源机制InSAR反演[J]. 武汉大学学报(信息科学版), 2019, 44(1): 118-124. ZHANG Qingyun, LI Yongsheng, LUO Yi, et al. Source Parameters for the 2016 Mw 6.2 Italy Amatrice Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 118-124.
[16] OKADA Y. Surface Deformation Due to Shear and Tensile Faults in a Half-Space[J]. Bulletin of the Seismological Society of America, 1985, 75(4): 1135-1154.
[17] HANKS T C, MCGUIRE R K. The Character of High-Frequency Strong Ground Motion[J]. Bulletin of the Seismological Society of America, 1981, 71(6): 2071-2095.
[18] BOORE D. Stochastic Simulation of High-Frequency Ground Motions Based on Seismological Models of the Radiated Spectra[J]. Bulletin of the Seismological Society of America, 1983, 73: 1865-1894.
[19] 陈刚, 李茂峰, 李克华,等.基于随机振动模型的强地面运动数值模拟及其在广西灵山M 634地震中的应用[J]. 中国地震, 2023, 39(4): 832-844. CHEN Gang, LI Maofeng, LI Kehua,et al.Strong Ground Motion Simulation of the M 634 Lingshan Guangxi Earthquake Base on Stochastic Finite Fault Modeling [J]. Earthquake Research in China, 2023, 39(4): 832-844.
[20] ALLEN T I, WALD D J. Topographic Slope as a Proxy for Seismic Site-Conditions (Vs30) and Amplification Aaround the Globe[R]. Open-File Report 2007-1357, Reston, Virginia,USA,2007.
[21] 丁宝荣, 孙景江, 杜轲, 等. 地震烈度与峰值加速度、峰值速度相关性研究[J]. 地震工程与工程振动, 2017, 37(2): 26-36. DING Baorong, SUN Jingjiang, DU Ke, et al. Study on Relationships Between Seismic Intensity and Peak Ground Acceleration, Peak Ground Velocity[J]. Earthquake Engineering and Engineering Dynamics, 2017, 37(2): 26-36.
[22] 中国地震局地球物理研究所. 应急管理部中国地震局发布西藏定日6.8级地震烈度图[OL]. https://mp.weixin.qq.com/s/YQO_rz-HYH9s3lRlndmGeg,2025. Institute of Geophysics, China Earthquake Administration. The Ministry of Emergency Management and China Earthquake Administration Released the Intensity Map of the Ms 6.8 Earthquake in Dingri, Xizang[OL]. https://mp.weixin.qq.com/s/YQO_rz-HYH9s3lRlndmGeg,2025.