数智耦合地学时空预测建模研究进展及展望

许磊, 陈能成, 邓敏

许磊, 陈能成, 邓敏. 数智耦合地学时空预测建模研究进展及展望[J]. 武汉大学学报 ( 信息科学版). DOI: 10.13203/j.whugis20240483
引用本文: 许磊, 陈能成, 邓敏. 数智耦合地学时空预测建模研究进展及展望[J]. 武汉大学学报 ( 信息科学版). DOI: 10.13203/j.whugis20240483
XU Lei, CHEN Nengcheng, DENG Min. Research Progress and Prospects of Data-Knowledge Coupled Spatiotemporal Prediction Modeling in Geosciences[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240483
Citation: XU Lei, CHEN Nengcheng, DENG Min. Research Progress and Prospects of Data-Knowledge Coupled Spatiotemporal Prediction Modeling in Geosciences[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240483

数智耦合地学时空预测建模研究进展及展望

基金项目: 

国家自然科学基金(42201509)

湖北省自然科学基金(2023AFB563)。

详细信息
    作者简介:

    许磊,博士,副教授,研究方向为时空预测。xulei10@cug.edu.cn

    通讯作者:

    陈能成,博士,教授。chennengcheng@cug.edu.cn

Research Progress and Prospects of Data-Knowledge Coupled Spatiotemporal Prediction Modeling in Geosciences

  • 摘要: 地学时空预测是地球系统科学的重要研究问题,针对地学时空过程,开展时空多尺度的未来演变预测。随着大数据、人工智能和地球科学的发展,地学时空预测从模型驱动的研究范式发展为数据驱动,进而发展为数据-知识联合驱动(数智耦合)的研究范式。本文首先回顾了地球系统科学时空预测模型的发展,包括统计、物理、人工智能、数智耦合模型及其局限性,其次阐述了数智耦合的基本概念、数智耦合框架、数智耦合关键技术,进一步探讨了数智耦合时空预测建模目前面临的重要挑战,包括数智耦合时空预测的逻辑深度、地学过程数智精准表征能力、数智耦合时空预测的专业壁垒,最后展望了数智耦合时空预测的未来发展方向,包括大模型时代的数智耦合、数智耦合时空预测的通用性和数智耦合时空预测的智能性,为地球科学领域数智耦合时空预测范式的发展提供较为全面的认知思路。
    Abstract: Objectives: Spatiotemporal prediction plays a crucial role in Earth system science, focusing on forecasting the multiscale future evolution of geospatial processes. With the development of big data, artificial intelligence (AI), and Earth science, spatiotemporal prediction has transitioned from a model-driven approach to a data-driven paradigm and, ultimately, to a data-knowledge coupled paradigm. This paper reviews the development of spatiotemporal prediction models, including statistical, physical, AI, and data-knowledge coupled models, while analyzing their limitations and challenges. This paper aims to review current progress of data-knowledge coupled spatiotemporal prediction modeling in geosciences, highlight the important challenges and provide insights on future development. Methods: This paper provides a systematic review of the evolution of spatiotemporal prediction models in Earth system science, with particular emphasis on the transition from statistical, physical, and AI-based models to data-knowledge coupled models. The paper further elaborates on the basic concepts, theoretical framework, and key technologies involved in data-knowledge coupling. Results: (1) This article proposes a four-in-one data-knowledge coupled spatiotemporal prediction framework of "data empowerment, knowledge guidance, joint drive, and intelligent computing solutions". (2) The review identifies the limitations of traditional spatiotemporal prediction models and emphasizes the advantages of data-knowledge coupled models that integrate both data-driven and knowledge-driven approaches. Key challenges in this field include the logical depth of data-knowledge coupling, the accurate representation of geoscientific processes, and overcoming professional barriers in spatiotemporal prediction modeling. (3) This paper highlights three promising development directions of spatiotemporal prediction in geosciences, including the data-knowledge coupling in the era of large models, the universality of data- knowledge coupled spatiotemporal prediction models, the intelligence of data- knowledge coupled spatiotemporal prediction models. Conclusions: Data-knowledge coupled spatiotemporal prediction models offer significant potential for advancing Earth sciences by enhancing prediction accuracy, interpretability, and robustness. In the future, the development of data- knowledge coupled geoscience spatiotemporal prediction will be more versatile and intelligent, with self-learning, self-evolution, self-adaptation, and self-generation capabilities, forming a highly intelligent prediction system that will demonstrate excellent adaptability and versatility in multiple fields, tasks, and scenarios.
计量
  • 文章访问数:  10
  • HTML全文浏览量:  0
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-17

目录

    /

    返回文章
    返回