Developmental Characteristics and Controlling Factors of Landslides Triggered by Extreme Rainfalls on 16 June 2024 in Longyan, Fujian Province
-
摘要:
2024-06-16,福建省龙岩市发生特大暴雨事件,24 h降雨量达到历史极值377.3 mm,诱发了大量的滑坡,造成了多地居民房屋损毁、道路中断,引起了社会的广泛关注。及时获取降雨诱发滑坡编目、发育分布规律及主要调控因子对灾后的应急救援决策和恢复重建至关重要。利用灾区的光学卫星遥感影像和数字高程模型,使用ResU-Net模型对龙岩市特大暴雨诱发滑坡进行了快速智能识别与人工检核,进一步结合地形、地貌和人类活动因素分析了此次事件诱发滑坡的空间分布,此外,使用参数最优地理探测器定量揭示了降雨型滑坡的主要调控因子和双调控因子之间的交互作用。结果表明,此次特大暴雨事件至少诱发滑坡3 951处,总面积约21.30 km²。主要以小型滑坡为主,上杭县和武平县诱发滑坡尤为严重,群发性明显。空间分析结果表明,44%的滑坡主要分布在高程200~300 m范围内,且随着距道路和距河流的距离越近,滑坡越集中。此次事件诱发滑坡的主要调控因子为海拔、距道路距离和距河流距离。不同调控因子的综合作用均增强了对降雨型滑坡的调控,其中海拔与土地利用的交互作用最强。该研究成果可为灾后应急救援决策、灾后重建和次生灾害风险隐患评估提供重要的数据支撑。
-
关键词:
- 6·16特大暴雨 /
- ResU-Net模型 /
- 滑坡智能识别 /
- 参数最优地理探测器 /
- 调控因子
Abstract:ObjectivesOn 16 June 2024, Longyan City in Fujian Province, Eastern China experienced exceptionally heavy rainfalls, setting a 24 h record of 377.3 mm. The extreme rainfalls triggered numerous landslides, causing widespread damage to residential homes and disrupting transportation in several areas, which attracted significant public attention. Timely acquisition of landslide inventories, along with a detailed understanding of their spatial distribution and controlling factors, is crucial for informing post-disaster emergency response and recovery efforts.
MethodsSatellite optical remote sensing imagery and digital elevation model in the affected region were used in conjunction with the ResU-Net model to rapidly and accurately identify the landslides triggered by the extreme rainfalls. A spatial analysis of the landslide distribution was conducted by integrating factors such as topography, geomorphology, and human activities. Additionally, an optimal parameters-based geographical detector model was employed to quantitatively analyze the primary controlling factors behind the landslides and the interaction effects between dual controlling factors.
ResultsThe extreme rainfall event triggered at least 3 951 landslides, covering a total area of approximately 21.30 km². Most landslides were small in scale, with Shanghang and Wuping counties being the most severely affected, showing a clustered spatial distribution. The spatial analysis revealed that 44% of the landslides occurred at elevations between 200-300 m, with landslide frequency increasing as the distance to roads and rivers decreased. Elevation, distance to roads, and distance to rivers were identified as the primary controlling factors for the landslides. Interaction effects between controlling factors were found to enhance landslide occurrence, with the interaction between elevation and land cover being particularly significant.
ConclusionsThis study provides a comprehensive inventory of landslides triggered by the extreme rainfall event in Longyan City, and identifies the primary controlling factors and spatial distribution patterns. The findings provide essential data for post-disaster emergency response, reconstruction planning, and risk assessment of potential secondary disasters.
-
目前,北斗导航卫星系统(BDS)已实现局域覆盖,随着系统建设的不断完善和应用的不断拓展,与之相关的各类数据处理软件的开发成为重要的研究内容。因此,自主开发北斗高精度数据处理软件,成为发展高精度位置服务的迫切任务[1-8]。因北斗导航卫星系统与GPS在星座构造、坐标框架、时间系统、信号频率等方面具有明显差异[9-15],现有的高精度GPS数据处理软件无法直接处理北斗数据。本文针对北斗高精度数据处理的系统设计、数据流、功能模块及高精度算法实现等进行了研究,研制开发了一套高精度北斗基线解算软件BGO(BeiDou Navigation Satellite System/Global Positioning System Office),并将其用于高速铁路高精度控制测量建网。通过与商业软件TGO(Trimble Geomatics Office)和TBC(Trimble Business Center),及高精度科研软件Bernese进行对比测试、性能分析,验证了该软件的正确性和有效性。
1 系统的设计与模块算法的实现
1.1 系统设计与数据流分析
北斗和GPS基线解算软件主要包含北斗基线处理、GPS基线处理及联合基线处理3大模块。各模块间相互独立,但使用相同的数据结构,且数据流基本一致。数据处理流程如图 1所示。
基线解算之前,需选择有效双频观测数据,具体包含低高度角卫星剔除、观测值粗差剔除、星历未获取观测数据剔除等。剔除质量较差的观测数据可通过可视化的方式实现。通过双频数据组合有效消除电离层延迟影响,伪距消电离组合能算出测站精确至10 m内的概略位置,从而形成网络拓扑图,便于用户查看站点的平面分布。基线解算时,北斗与GPS独立系统数据处理算法相同;联合处理需选择统一的坐标和时间框架,随着多余观测数的增加,还需设置合理的模糊度固定限值。基线解算后,进行网平差,应剔除不合格基线,直至平差结果满足要求。
1.2 高精度基线解算算法实现
高精度基线解算利用双差观测量建立误差方程,北斗双差观测量构造如式(1):
$$ \mathit{\Delta} \nabla L^{{C_m}{C_n}}_{{S_i}{S_j}} = \left( {L^{{C_n}}_{{S_j}} - L^{{C_n}}_{{S_i}}} \right) - \left( {L^{{C_m}}_{{S_j}} - L^{{C_m}}_{{S_i}}} \right) $$ (1) 式中,Δ▽L表示双差观测量;Si和Sj表示任意站点;Cm和Cn表示任意北斗卫星。
依据式(1)构建的双差观测量,建立误差方程,如式(2):
$$ \left[ \begin{array}{l} \mathit{\Delta} \nabla \boldsymbol{\varPhi} \\ \mathit{\Delta} \nabla \boldsymbol{P} \end{array} \right] = \boldsymbol{BX} + \boldsymbol{A}\mathit{\Delta} \nabla \boldsymbol{N} + \boldsymbol{V} $$ (2) 式中,Δ▽Φ和Δ▽P分别表示卫星载波相位和伪距双差观测量;X表示基线向量;Δ▽N表示双差整周模糊度;B和A为系数阵;V为残差向量。
利用式(2)构建的误差方程,解算基线向量和双差整周模糊度浮点解。利用LAMBAD方法[16, 17]固定双差整周模糊度后去除。再利用载波相位观测值获取高精度基线向量结果。基线解算过程中,主要利用抗差估计的切比雪夫多项式拟合法[18]及MW-GF组合法[19]探测与修复周跳。
对北斗和GPS双系统基线解算,只需将各系统的双差观测量误差方程叠加后平差计算,即可实现双系统联合基线解算。但需注意,星间差分需选择同一系统卫星,否则会引入系统间信号硬件延迟[20],影响双差整周模糊度的固定。另外,北斗和GPS在时间框架、坐标框架等存在一定差异,双系统联合解算需保证框架的统一。
北斗和GPS时间转换公式如式(3):
$$ {t_C} = {t_G}-14\;{\rm{s}} $$ (3) 式中,tC和tG分别表示北斗时和GPS时,两者均为原子时,起算原点不同[13]。
北斗和GPS坐标转换公式如式(4):
$$ \begin{array}{c} \left[ {\begin{array}{*{20}{c}} {{X_C}}\\ {{Y_C}}\\ {{Z_C}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{X_G}}\\ {{Y_G}}\\ {{Z_G}} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} {{T_X}}\\ {{T_Y}}\\ {{T_Z}} \end{array}} \right] + \\ \left[ {\begin{array}{*{20}{c}} D&{ - {R_Z}}&{{R_Y}}\\ {{R_Z}}&D&{ - {R_X}}\\ { - {R_Y}}&{{R_X}}&D \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{X_G}}\\ {{Y_G}}\\ {{Z_G}} \end{array}} \right] \end{array} $$ (4) 式中,北斗坐标(XC,YC,ZC)与GPS坐标(XG,YG,ZG)可通过七参数TX、TY、TZ、D、RX、RY、RZ进行转换。北斗CGCS2000坐标系采用ITRF97框架2000历元的坐标和速度场,当前GPS WGS84坐标和ITRF08基本一致。因此,可利用ITRF97框架2000历元与ITRF08间转换的七参数(ITRF网站公布)实现北斗与GPS坐标框架的统一[11, 12]。
2 BGO数据处理实例与性能测试
2.1 高速铁路CPI控制网基线解算
处理高速铁路CPI控制网时,通过读取观测文件和星历文件,单点定位生成控制网的基线网络拓扑图,如图 2所示。基线解算前,设置相关参数包括卫星截止高度角、误差限差参数、框架、对流层模型、电离层模型、模糊度Ratio值、同步最小观测历元数等。设置完成后,可选择北斗、GPS、联合3种模式进行基线解算。基线解算完成后,软件界面中将显示解算的基线分量及其精度,并可显示残差向量检核基线解算效果。
2.2 BGO、TGO、Bernese软件处理GPS基线结果比较
为了测试BGO解算GPS基线的正确性,将其与TGO和Bernese软件处理结果进行了比较,得到57条GPS基线(基线最长6 667 m,最短446 m)的比较结果,如图 3所示。
图 3(a)、3(b)分别表示BGO软件与TGO、Bernese软件处理GPS基线分量的差值ΔX、ΔY、ΔZ。图 3(a)中,BGO和TGO有52条基线在X、Y、Z方向的分量差值均在2 cm内,有48条基线各分量差值在mm级。TGO解算少量基线验后方差分量超限,与BGO基线分量差值较大。图 3(b)中,BGO和Bernese有55条基线在X、Y、Z方向的分量差值均在2 cm内,有49条基线各分量差值在mm级。
图 4(a)~4(c)分别表示BGO、TGO、Bernese软件处理GPS基线的内符合精度σX、σY、σZ(BGO、TGO、Bernese软件基线解算精度分别精确至0.1 mm、1 mm和0.1 mm)。整体上,约90%的基线3个软件的解算精度相当。
2.3 BGO、TBC软件处理北斗与GPS联合基线结果
为了测试BGO解算北斗与GPS联合基线的性能,本文选用美国Trimble的商业软件TBC与之进行比较。同上57条基线,每条基线观测数据均包含北斗与GPS观测数据。图 5展示了BGO和TBC处理北斗与GPS联合基线分量的差值ΔX、ΔY、ΔZ。图 5可见,98%的基线分量差值分布在mm级,表明BGO软件处理联合基线能达到与TBC软件相当的水平。另外,两者内符合精度绝大部分均在mm级,故图 5中未加以比较。
由此可知,BGO软件处理GPS基线、北斗与GPS联合基线的内外符合精度能达到TGO、Bernese、TBC相当的水平。因此,以BGO软件处理GPS、北斗与GPS联合基线结果为参考值,分析该软件处理北斗基线结果的正确性和可靠性,如图 6和图 7所示。图 6比较了北斗与GPS、联合基线分量的差值,图 7比较了北斗、GPS、联合基线解算的内符合精度。
图 6(a)表示BGO软件处理北斗与GPS基线分量的差值ΔX、ΔY、ΔZ,其中有43条基线在X、Y、Z方向上的分量差值Δx、Δy、Δz在2 cm内,有31条基线在X、Y、Z方向上的分量差值在mm级。图 6(b)表示BGO软件处理北斗与联合基线分量的差值,其中有54条基线在X、Y、Z方向上的分量差值在2 cm内,有38条基线在X、Y、Z方向上的分量差值在mm级(图 6中第6条基线北斗为浮点解,各分量差值结果较大,图中置为0)。
图 7中,93%的联合基线在X、Y、Z方向上的分量精度分别优于0.5 mm、1 mm、0.5 mm;约90%的北斗基线和95%的GPS基线在X、Y、Z方向上的分量精度分别优于1 mm、2 mm、1 mm。由北斗、GPS、联合基线3者精度比较可知,在北斗试运行阶段,GPS基线内符合精度略优于北斗,北斗与GPS联合系统基线内符合精度明显高于独立系统。
2.4 BGO基线网平差及其精度分析
BGO具备网平差功能,根据网平差后的基线分量改正数、相对中误差、点位精度等判断基线解算结果的可靠性。对上述解算的北斗、GPS、联合基线分别进行无约束网平差。
北斗、GPS、联合基线无约束网平差的平差改正数δX、δY、δZ绝大部分在±1 cm内,如图 8(a)~8(c)所示。最弱边相对中误差优于5.5 ppm(规范限值),具体见表 1。据图 8、表 1及《高速铁路工程测量规范》[21]可知,BGO能合理稳定地解算北斗、GPS及联合基线,解算结果中的基线向量改正数、最弱边相对中误差、最弱点点位精度均满足CPI控制测量要求,各系统解算均能精确获得24个CPI控制点坐标。
表 1 GPS、北斗、联合无约束平差结果统计Table 1. The Statistics of GPS, BDS and BDS/GPS Combined Unconstrained Adjustment Results解算模式 独立基线 多余观测数 控制点个数 最弱边相对中误差/ppm 最弱点点位精度/mm GPS 55 66 24 3.6 23.6 北斗 51 57 24 3.1 26.9 联合 57 72 24 3.7 17.9 3 结语
本文系统地研究了北斗与GPS联合基线解算的算法,自主开发了北斗高精度基线解算软件BGO。通过实测高铁CPI控制网的数据处理测试表明:软件能进行高精度地处理北斗与GPS数据, 以及北斗与GPS联合数据处理;GPS基线解算性能与天宝TGO软件相当,能达到与Bernese软件一致的精度;北斗与GPS基线处理能达到与TBC相当的水平。BGO最大的优势在于能对北斗和GPS进行联合解算,从而提高北斗或GPS单系统的基线解算合格率和精度。经高速铁路CPI控制网实例测试,证明该软件处理基线结果可用于高精度北斗和GPS测量控制网的数据处理。
感谢欧洲空间局提供的Sentinel⁃2光学影像和哥白尼数字高程模型数据,以及国家数据中心提供的龙岩市降雨数据。陈博,博士生,主要从事影像大地测量与滑坡灾害研究。bo.chen@chd.edu.cnhttp://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20240336 -
表 1 本文所使用的数据集
Table 1 Datasets Used in This Study
类型 影像名称 时间 空间分辨率/m 灾前光学影像 Sentinel-2 2023-07-15 10 灾后光学影像 Sentinel-2 2024-08-08 10 DEM COP-DEM 2011-01-01—2015-01-07 12.5 土地利用 Landsat 2020年 30 NDVI Sentinel-2 2023年 10 -
[1] Ma S Y, Shao X Y, Xu C. Characterizing the Distribution Pattern and a Physically Based Susceptibility Assessment of Shallow Landslides Triggered by the 2019 Heavy Rainfall Event in Longchuan County, Guangdong Province, China[J]. Remote Sensing, 2022, 14(17): 4257.
[2] Cui Y L, Yang L, Xu C, et al. Spatial Distribution of Shallow Landslides Caused by Typhoon Lekima in 2019 in Zhejiang Province, China[J]. Journal of Mountain Science, 2024, 21(5): 1564-1580.
[3] 许强, 徐繁树, 蒲川豪, 等. 2024年4月广东韶关江湾镇极端降雨诱发群发性滑坡初步分析[J]. 武汉大学学报(信息科学版), 2024, 49(8): 1264-1274. Xu Qiang, Xu Fanshu, Pu Chuanhao, et al. Preliminary Analysis of Extreme Rainfall-Induced Cluster Landslides in Jiangwan Township, Shaoguan, Guangdong, April 2024[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1264-1274.
[4] Chen B, Li Z H, Zhang C L, et al. Wide Area Detection and Distribution Characteristics of Landslides Along Sichuan Expressways[J]. Remote Sensing, 2022, 14(14): 3431.
[5] 李振洪, 朱武, 余琛, 等. 影像大地测量学发展现状与趋势[J]. 测绘学报, 2023, 52(11): 1805-1834. Li Zhenhong, Zhu Wu, Yu Chen, et al. Development Status and Trends of Imaging Geodesy[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(11): 1805-1834.
[6] 李振洪, 宋闯, 余琛, 等. 卫星雷达遥感在滑坡灾害探测和监测中的应用: 挑战与对策[J]. 武汉大学学报(信息科学版), 2019, 44(7): 967-979. Li Zhenhong, Song Chuang, Yu Chen, et al. Application of Satellite Radar Remote Sensing to Landslide Detection and Monitoring: Challenges and Solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 967-979.
[7] Chen L F, Li Z Q, Song C, et al. Automatic Detection of Earthquake Triggered Landslides Using Sentinel-1 SAR Imagery Based on Deep Learning[J]. International Journal of Digital Earth, 2024, 17(1): 2393261.
[8] 李振洪, 张成龙, 陈博, 等. 一种基于多源遥感的滑坡防灾技术框架及其工程应用[J]. 地球科学, 2022, 47(6): 1901-1916. Li Zhenhong, Zhang Chenglong, Chen Bo, et al. A Technical Framework of Landslide Prevention Based on Multi-source Remote Sensing and Its Engineering Application[J]. Earth Science, 2022, 47(6): 1901-1916.
[9] 姜万冬, 席江波, 李振洪, 等. 模拟困难样本的Mask R-CNN滑坡分割识别[J]. 武汉大学学报(信息科学版), 2023, 48(12): 1931-1942. Jiang Wandong, Xi Jiangbo, Li Zhenhong, et al. Landslide Detection and Segmentation Using Mask R-CNN with Simulated Hard Samples[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 1931-1942.
[10] Wang X, Fan X M, Xu Q, et al. Change Detection-Based Co-seismic Landslide Mapping Through Extended Morphological Profiles and Ensemble Strategy[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 187: 225-239.
[11] Mondini A C, Guzzetti F, Melillo M. Deep Learning Forecast of Rainfall-Induced Shallow Landslides[J]. Nature Communications, 2023, 14(1): 2466.
[12] Dai L X, Fan X M, Wang X, et al. Coseismic Landslides Triggered by the 2022 Luding Ms 6.8 Earthquake, China[J]. Landslides, 2023, 20(6): 1277-1292.
[13] 刘佳, 伍宇明, 高星, 等. 基于GEE和U-net模型的同震滑坡识别方法[J]. 地球信息科学学报, 2022, 24(7): 1275-1285. Liu Jia, Wu Yuming, Gao Xing, et al. Image Re-cognition of Co-seismic Landslide Based on GEE and U-Net Neural Network[J]. Journal of Geo⁃Information Science, 2022, 24(7): 1275-1285.
[14] Chen B, Li Z H, Song C, et al. Automatic Detection of Active Geohazards with Millimeter-to-Meter-scale Deformation and Quantitative Analysis of Factors Influencing Spatial Distribution: A Case Study in the Hexi Corridor, China[J]. International Journal of Applied Earth Observation and Geoinformation, 2024, 131: 103995.
[15] Guzzetti F, Gariano S L, Peruccacci S, et al. Geographical Landslide Early Warning Systems[J]. Earth⁃Science Reviews, 2020, 200: 102973.
[16] Peruccacci S, Brunetti M T, Gariano S L, et al. Rainfall Thresholds for Possible Landslide Occurrence in Italy[J]. Geomorphology, 2017, 290: 39-57.
[17] Song C, Yu C, Li Z H, et al. Triggering and Recovery of Earthquake Accelerated Landslides in Central Italy Revealed by Satellite Radar Observations[J]. Nature Communications, 2022, 13: 7278.
[18] 徐颖. 强降雨作用下类土质滑坡演化过程及破坏机理研究[D]. 武汉: 中国地质大学(武汉), 2014. Xu Ying. Study on Evolution Process and Failure Mechanism of Soil-like Landslide Under Heavy Rainfall[D]. Wuhan: China University of Geosciences(Wuhan), 2014.
[19] Funk C, Peterson P, Landsfeld M, et al. The Climate Hazards Infrared Precipitation with Stations: A New Environmental Record for Monitoring Extremes[J]. Scientific Data, 2015, 2: 150066.
[20] Li Y Y, Li L Y, Chen C F, et al. Correction of Global Digital Elevation Models in Forested Areas Using an Artificial Neural Network-Based Method with the Consideration of Spatial Autocorrelation[J]. International Journal of Digital Earth, 2023, 16(1): 1568-1588.
[21] Beven K J, Kirkby M J. A Physically Based, Variable Contributing Area Model of Basin Hydrology / Un Modèle à Base Physique de Zone D’appel Variable de L’hydrologie Du Bassin Versant[J]. Hydrological Sciences Bulletin, 1979, 24(1): 43-69.
[22] Zhang X, Liu L Y, Wu C S, et al. Development of a Global 30 m Impervious Surface Map Using Multisource and Multitemporal Remote Sensing Datasets with the Google Earth Engine Platform[J]. Earth System Science Data, 2020, 12(3): 1625-1648.
[23] Pettorelli N, Vik J O, Mysterud A, et al. Using the Satellite-Derived NDVI to Assess Ecological Responses to Environmental Change[J]. Trends in Ecology & Evolution, 2005, 20(9): 503-510.
[24] Qi W W, Wei M F, Yang W T, et al. Automatic Mapping of Landslides by the ResU-Net[J]. Remote Sensing, 2020, 12(15): 2487.
[25] Ghorbanzadeh O, Gholamnia K, Ghamisi P. The Application of ResU-Net and OBIA for Landslide Detection from Multi-temporal Sentinel-2 Images[J]. Big Earth Data, 2023, 7(4): 961-985.
[26] Ghorbanzadeh O, Shahabi H, Crivellari A, et al. Landslide Detection Using Deep Learning and Object-Based Image Analysis[J]. Landslides, 2022, 19(4): 929-939.
[27] Yang Z Q, Xu C, Li L. Landslide Detection Based on ResU-Net with Transformer and CBAM Embedded: Two Examples with Geologically Different Environments[J]. Remote Sensing, 2022, 14(12): 2885.
[28] Zhang Z X, Liu Q J, Wang Y H. Road Extraction by Deep Residual U-Net[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5): 749-753.
[29] Wang F R, Fan X M, Yunus A P, et al. Coseismic Landslides Triggered by the 2018 Hokkaido, Japan (Mw 6.6), Earthquake: Spatial Distribution, Controlling Factors, and Possible Failure Mechanism[J]. Landslides, 2019, 16(8): 1551-1566.
[30] 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134. Wang Jinfeng, Xu Chengdong. Geodetector: Principle and Prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134.
[31] Song Y Z, Wang J F, Ge Y, et al. An Optimal Parameters-Based Geographical Detector Model Enhances Geographic Characteristics of Explanatory Variables for Spatial Heterogeneity Analysis: Cases with Different Types of Spatial Data[J]. GIScience & Remote Sensing, 2020, 57(5): 593-610.
[32] Chen Bo, Song Chuang, Chen Yi, et al. Emergency Identification and Influencing Factor Analysis of Coseismic Landslides and Building Damages Induced by the 2023 Ms 6.2 Jishishan(Gansu, China) Earthquake[J]. Geomatics and Information Science of Wuhan University, 2024, DOI: 10.13203/J.whugis20230497. (陈博, 宋闯, 陈毅, 等. 2023年甘肃积石山Ms 6.2地震同震滑坡和建筑物损毁情况应急识别与影响因素研究[J]. 武汉大学学报(信息科学版),2024,DOI: 10.13203/J.whugis20230497.) doi: 10.13203/J.whugis20230497
[33] Dai Z W, Yang L, Zhang N, et al. Deformation Characteristics and Reactivation Mechanism of an Old Landslide Induced by Combined Action of Excavation and Heavy Rainfall[J]. Frontiers in Earth Science, 2023, 10: 1009855.
[34] Lacroix P, Handwerger A L, Bièvre G. Life and Death of Slow-Moving Landslides[J]. Nature Reviews Earth & Environment, 2020, 1: 404-419.
[35] Chen J S, Chen Y P, Wang K B, et al. Differences in Soil Water Storage, Consumption, and Use Efficiency of Typical Vegetation Types and Their Responses to Precipitation in the Loess Plateau, China[J]. Science of the Total Environment, 2023, 869: 161710.
[36] Li X Y, Du L, Li X, et al. Effects of Human Activities on Urban Vegetation: Explorative Analysis of Spatial Characteristics and Potential Impact Factors[J]. Remote Sensing, 2022, 14(13): 2999.
[37] Jin Z, Dong Y S, Wang Y Q, et al. Natural Vegetation Restoration Is more Beneficial to Soil Surface Organic and Inorganic Carbon Sequestration than Tree Plantation on the Loess Plateau of China[J]. Science of the Total Environment, 2014, 485/486: 615-623.
[38] Yu Z H, Zhao Q H, Liu Y, et al. Soil Erosion Associated with Roads—A Global Review and Statistical Analysis[J]. Land Degradation & Development, 2024, 35(11): 3509-3522.
[39] Ma T H, Li C J, Lu Z M, et al. Rainfall Intensity–Duration Thresholds for the Initiation of Landslides in Zhejiang Province, China[J]. Geomorphology, 2015, 245: 193-206.
[40] Guo Z Y, Huang Q B, Liu Y, et al. Model Experimental Study on the Failure Mechanisms of a Loess-bedrock Fill Slope Induced by Rainfall[J]. Engineering Geology, 2023, 313: 106979.
[41] 杨文东. 降雨型滑坡特征及其稳定分析研究[D]. 武汉: 武汉理工大学, 2006. Yang Wendong. Characteristics and Stability Analysis of Rainfall Landslide[D]. Wuhan: Wuhan University of Technology, 2006.
-
期刊类型引用(6)
1. 柯文清 ,陈业滨 ,赵志刚 ,韩德志 ,郭仁忠 . 基于文献计量的新世纪地图可视化研究演变和热点分析. 地理与地理信息科学. 2025(01): 15-23 . 百度学术
2. 于峰一泽,汤国安,陆鼎阳,林晓芬,胡光辉,沈婕,吴明光. 语言学视角下的地图演化. 地理学报. 2024(01): 171-186 . 百度学术
3. 韩德志,郭仁忠,陈业滨,赵志刚,柯文清. 基于可视化维度理论的泛地图知识推荐方法. 地球信息科学学报. 2024(01): 110-120 . 百度学术
4. 刘强,刘金花,王磊斌,陈鑫,赵志斌,赵晓艳,李英奎. 使用虚拟现实技术提高冰川地貌表达维度的研究. 冰川冻土. 2024(03): 1087-1098 . 百度学术
5. 邓志钢,郭仁忠,陈业滨,马丁,赵志刚,朱维. 面向轨迹可视化的泛地图表达维度关联方法及应用. 测绘通报. 2024(11): 56-60+96 . 百度学术
6. 柯婷,杨品福,任福,李连营,杨晨. 内河航行参考图地图符号形式化表达. 地理空间信息. 2024(12): 102-105 . 百度学术
其他类型引用(4)