中国近海岸基GNSS-R探测蒸发波导的空间范围研究

李福, 孙越强, 夏俊明, 王先毅, 杜起飞, 白伟华, 梁宏, 罗晋

李福, 孙越强, 夏俊明, 王先毅, 杜起飞, 白伟华, 梁宏, 罗晋. 中国近海岸基GNSS-R探测蒸发波导的空间范围研究[J]. 武汉大学学报 ( 信息科学版). DOI: 10.13203/j.whugis20240330
引用本文: 李福, 孙越强, 夏俊明, 王先毅, 杜起飞, 白伟华, 梁宏, 罗晋. 中国近海岸基GNSS-R探测蒸发波导的空间范围研究[J]. 武汉大学学报 ( 信息科学版). DOI: 10.13203/j.whugis20240330
LI Fu, SUN Yueqiang, XIA Junming, WANG Xianyi, DU Qifei, BAI Weihua, LIANG Hong, LUO Jin. Research on Spatial Range of GNSS-R Detection of Evaporation Duct in the Coastal Waters of China[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240330
Citation: LI Fu, SUN Yueqiang, XIA Junming, WANG Xianyi, DU Qifei, BAI Weihua, LIANG Hong, LUO Jin. Research on Spatial Range of GNSS-R Detection of Evaporation Duct in the Coastal Waters of China[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240330

中国近海岸基GNSS-R探测蒸发波导的空间范围研究

基金项目: 

国家自然科学基金(42104032,42074042);风云应用先导项目(FY-APP-2022.0108);中国科学院青年创新促进委员会项目(2020152);中国科学院青年交叉团队科研项目(JCTD-2021-10);中国科学院国家空间科学中心青年创新课题(E3PD40017S)

详细信息
    作者简介:

    李福,博士生,工程师,研究方向为GNSS遥感探测与应用。lifu@nssc.ac.cn

    通讯作者:

    夏俊明,博士,副研究员。xiajunming@nssc.ac.cn

Research on Spatial Range of GNSS-R Detection of Evaporation Duct in the Coastal Waters of China

  • 摘要: 蒸发波导由于其折射效应对雷达、通信具有显著影响。GNSS-R(Global Navigation SatelliteSystems Reflectometry)全天候、被动接收的特点使其具有探测蒸发波导的应用潜力,然而岸基GNSS-R探测的空间范围与蒸发波导高度密切相关,在中国近海复杂的蒸发波导环境下是否具备实用价值仍有待研究。因此,基于沿海气象观测站实测数据以及欧洲中期天气预报中心(ECMWF)发布的海水表面温度数据,采用蒸发波导预测模型与GNSS-R蒸发波导探测范围模型,系统分析了GNSS-R探测蒸发波导的空间范围的时空分布特征。结果表明,基于中国沿海气象数据得到的GNSS-R探测蒸发波导的空间范围在UTC时间5点至7点达到峰值,至夜间逐渐降低并趋于稳定;季节变化方面,夏秋季平均探测范围最大,冬季最小,在蒸发波导的高发期和平静期,GNSS-R探测蒸发波导的空间范围的平均值分别为145km和103km;此外地域地形差异对探测范围也有影响,辽东半岛以及海南岛西侧探测范围平均值均大于东侧,而台湾海峡作为蒸发波导的高发区域,其GNSS-R探测蒸发波导的空间范围明显大于周边海域。这一研究结果将扩展气象数据的应用领域,提高相关区域雷达探测效能,并且为通信提供干扰预警信息。
    Abstract: Objectives: The evaporation duct has a significant impact on shore based radar, shipborne radar, and 5G communication due to its refractive effect. GNSS-R has the application potential of detecting evaporation duct due to the characteristics of all-weather, passive reception and high spatial and temporal resolution. However, spatial range of GNSSR detection of evaporation duct is closely related to the evaporation duct height, and whether it has practical value in the complex evaporation duct environment near the coast of China still needs to be studied. Methods: Thus, meteorological data measured from coastal meteorological observation stations and sea surface temperature released by ECMWF were used to obtain the spatiotemporal distribution pattern of the spatial range of GNSS-R detection of evaporation duct, which the evaporation duct model and GNSS-R evaporation duct detection range model are adopted. Results: The results indicate that the spatial range of GNSS-R detection of evaporation duct based on Chinese coastal meteorological data first increases and then decreases during the day, reaches maximum from 5:00 to 7:00 UTC, and gradually decreases and stabilizes at night. In terms of seasonal changes, the highest is reached in summer and autumn, and the lowest is in winter. The detection range of the Bohai Sea and Yellow Sea are greatly affected by seasons, while the detection range of the East China Sea and South China Sea is large and remains relatively stable throughout the year, especially in the South China Sea, it can maintain a detection range of about 130km throughout the year. Further analysis found that during the high incidence period and the quiet period of the evaporation duct, the average spatial range of GNSS-R detection of the evaporation duct is 145km and 103km, respectively. In addition, regional differences have an influence on the detection range, for example, the average spatial range of GNSS-R detection of evaporation duct on the western side of Liaodong Peninsula and Hainan Island is greater than that on the eastern side, and the Taiwan Strait, as a high incidence area for evaporation ducts, has a larger spatial range for GNSS-R detection of evaporation ducts than the surrounding waters. Conclusions: The analysis results can expand the application areas of meteorological data, improve radar detection efficiency in relevant areas, and provide the warning information for communication.
  • [1] KANG S, ZHANG Y, WANG H. Atmospheric duct in troposphere environment[M]. Beijing:Science Press,2014:2-82.(康士峰,张玉生,王红光.对流层 大气波导[M].北京:科学出版社, 2014:2-82.)
    [2] JIAO L, ZHANG Y. Study of the shadow zone of the radar in the atmospheric duct[J]. Journal of Xidian University,2004,(05):815-820.(焦林,张永刚.大气 波导条件下雷达电磁盲区的研究[J].西安电子科技大学学报,2004,(05):815-820.)
    [3] REN S. Design and Implementation of The Shipborne Radar Performance Evaluation System in The Evaporation Duct[D]. Xinxiang:Henan Normal University, 2022.(任朔.蒸发波导环境下的舰船雷达性能评估系统设计与实现[D].新乡:河南师范大学, 2022.)
    [4] ZHANG H, WANG H G, LI J R. Analysis on trans-horizon sea echoes of weather radar within an atmospheric duct process[J]. Chinese journal of radio science, 2022, 37(3):505-511.(in Chinese). DOI:10.12265/j.cjors.2021090(章晗,王红光,李建儒.一次大气波导过程天气雷达超视距海面回波分析[J].电波 科学学报, 2022, 37(3):505-511. DOI:10.12265/j.cjors.2021090)
    [5]

    YU H, LIAO C, FENG J, et al. Analysis of Radar Target Scattering Echo With Surface Ducting in Large-Scale Environments Based on the PE-MoM Hybrid Method[J]. IEEE Antennas Wirel Propag Lett, 2023, 22(9):2295-9.

    [6]

    ZHOU T, SUN T, HU H, et al. Analysis and Prediction of 100 km-Scale Atmospheric Duct Interference in TD-LTE Networks[J]. Journal of Communications and Information Networks, 2017, 2(1):66-80.

    [7]

    YANG C, GUO L. Inferring the atmospheric duct from radar sea clutter using the improved artificial bee colony algorithm[J]. Int J Microw Wirel Technol, 2018, 10(4):437-45.

    [8]

    WANG Y, CHEN Y, ZHOU T, et al. A Traceable Approach to Remote Interference Management for New Radio; proceedings of the 2019 IEEE International Conference on Communications Workshops (ICC Workshops), F 20-24 May 2019, 2019[C].

    [9]

    LIU F, PAN J, ZHOU X, et al. Atmospheric ducting effect in wireless communications:Challenges and opportunities[J]. Journal of Communications and Information Networks, 2021, 6(2):101-9.

    [10]

    WEI M, XIE W, ZHANG G. Research Based on Remote Interference Management; proceedings of the 17th IEEE International Wireless Communications and Mobile Computing, IWCMC 2021, June 28, 2021-July 2, 2021, Virtual, Online, China, F, 2021[C]. Institute of Electrical and Electronics Engineers Inc.

    [11] ZHAO F L. Forming interference of atmospheric duct in 5G and avoid method[J]. Chinese journal of radio science, 2021, 36(1):109-115+126.(in Chinese). DOI:10.13443/j.cjors.2019110901(赵飞龙. 5G大气波导干扰形成条件及其规避方法研究[J].电波科学学报, 2021, 36(1):109-115+126. DOI: 10.13443/j.cjors.2019110901)
    [12] DONG H, SONG L, HUA C, et al. Survey of the research and development on the maritimecommunication technology[J]. Telecommunications Science, 2022, 38(05):1-17.(董浩,宋亮,化存卿等.海上通信技术发展与研究综述[J].电信科学, 2022, 38(05):1-17.)
    [13] ZHANG Y S, GUO X M,ZHAO Q, et al. Research status and thinking of atmospheric duct[J]. Journal of radio science, 2020, 35(6):813-831.(in Chinese). DOI:10.13443/j.cjors.2020072401(张玉生,郭相明,赵强,等.大气波导的研究现状与思考[J].电波科学学报, 2020, 35(6):813-831. DOI:10.13443/j.cjors.2020072401
    [14]

    FOUNTOULAKIS V, EARLS C. Duct heights inferred from radar sea clutter using proper orthogonal bases[J]. Radio Sci, 2016, 51(10):1614-26.

    [15]

    JI H, YIN B, ZHANG J, et al. Joint Inversion of Evaporation Duct Based on Radar Sea Clutter and Target Echo Using Deep Learning[J]. Electronics, 2022, 11(14):2157.

    [16]

    JESKE H. State and Limits of Prediction Methods of Radar Wave Propagation Conditions Over Sea, Dordrecht, F, 1973[C]. Springer Netherlands.

    [17]

    PAULUS R A. Practical application of an evaporation duct model[J]. Radio Sci, 1985, 20(4):887-96.

    [18]

    MUSSON-GENON L, GAUTHIER S, BRUTH E. A simple method to determine evaporation duct height in the sea surface boundary layer[J]. Radio Sci, 1992, 27(05):635-44.

    [19]

    BABIN S M, YOUNG G S, CARTON J A. A new model of the oceanic evaporation duct[J]. J Appl Meteorol Climatol, 1997, 36(3):193-204.

    [20]

    Frederickson P., Davidson K., Goroch A.Operational Bulk Evaporation Duct Model for MORIAH Version 1.2, Naval Postgraduate School (2000), pp. 93943- 95114.

    [21]

    FAIRALL C W, BRADLEY E F, HARE J E, et al. Bulk Parameterization of Air-Sea Fluxes:Updates and Verification for the COARE Algorithm[J]. Journal of Climate, 2003, 4):

    [22] LIU C, HUANG J, JIANG C, et al. Modeling Evaporation Duct over Sea withPseudo-Refractivity and Similarity Theory[J]. Acta Electronica Sinica, 2001, 29(7):970-2.(刘成国,黄际英,江长荫等.用伪折射率和相似理论计算海上蒸发波导剖面[J].电子学报, 2001, 29(7):970-2.)
    [23] YANG K, MA Y, SHI Y. Spatio-temporal distributions of evaporation duct forthe West Pacific Ocean[J]. Acta Physica Sinica, 2009, 58(10):7339-50.(杨坤 德,马远良,史阳.西太平洋蒸发波导的时空统计规律研究[J].物理学报, 2009, 58(10):7339-50.)
    [24] CHEN Li. Statistical Characteristics Analysis of Atmospheric Ducts over China Seas and Numerical Modeling Study on Their Evolution Mechanism[D]. Qingdao:Ocean University of China, 2010.(陈莉.中国近海大气波导的统计特征分析及演变机理的数值研究[D].青岛:中国海洋大学, 2010.)
    [25]

    YANG K, ZHANG Q, SHI Y, et al. On analyzing space-time distribution of evaporation duct height over the global ocean[J]. Acta Oceanol Sin, 2016, 35(7): 20-9.

    [26]

    YANG S, LI X, WU C, et al. Application of the PJ and NPS evaporation duct models over the South China Sea (SCS) in winter[J]. PLoS One, 2017, 12(3): e0172284.

    [27]

    GUO X, ZHAO D, ZHANG L, et al. A Comparison Study of Sensitivity on PJ and NPS Models in China Seas[J]. J Ocean Univ, 2019, 18(5):1022-30.

    [28] YAN K. Theoretical model and characteristics of evaporation waveguide near the sea surface[M]. Beijing:Publishing House of Electronics Industry, 2022:31- 96.(杨坤德.近海面蒸发波导理论模型与特性[M].北京:电子工业出版社, 2022:31-96.)
    [29]

    QIU Z, ZHANG C, WANG B, et al. Analysis of the accuracy of using ERA5 reanalysis data for diagnosis of evaporation ducts in the East China Sea[J]. Front Mar Sci, 2023, 9(1108600.

    [30]

    MARTINEIRA M. A PASSIVE REFLECTOMETRY AND INTERFEROMETRY SYSTEM (PARIS)-APPLICATION TO OCEAN ALTIMETRY[J]. Esa Journal-European Space Agency, 1993, 17(4):331-55.

    [31]

    GARRISON J L, KATZBERG S J. The Application of Reflected GPS Signals to Ocean Remote Sensing[J]. Remote Sensing of Environment, 2000, 73(2): 175-87.

    [32]

    ZAVOROTNY V U, VORONOVICH A G. Scattering of GPS signals from the ocean with wind remote sensing application[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(2):951-64.

    [33]

    TORRES O, KATZBERG S J. Analysis of reflected global positioning system (GPS) signals from land for soil moisture determination and topography mapping; proceedings of the Earth Observing Systems VII, July 7, 2002-July 10, 2002, Seattle, WA, United states, F, 2002[C]. SPIE.

    [34] JIA Yan,JIN Shuanggen,XIAO Zhiyu,et al.Soil Moisture Remote Sensing Using Global Navigation Satellite System-Reflectometry:Current Status and Opportunity[J].Geomatics and Information Science of Wuhan University,2023,48(11):1784-1799.DOI:10.13203/j.whugis20230253(贾燕,金双根,肖智宇,等.全球 导航卫星系统反射测量土壤水分遥感:现状与机遇[J].武汉大学学报(信息科学版),2023,48(11):1784-1799.DOI:10.13203/j.whugis20230253)
    [35] ZHANG Shuangcheng,GUO Qinyu,MA Zhongmin,et al.Research Advances and Some Thoughts on Soil Moisture Retrieval by Space-Borne GNSSR[J].Geomatics and Information Science of Wuhan University,2024,49(1):15-26.DOI:10.13203/j.whugis20230100(张双成,郭沁雨,马中民,等.星载GNSS‐R反 演土壤湿度研究进展与思考[J].武汉大学学报(信息科学版),2024,49(1):15-26.DOI:10.13203/j.whugis20230100)
    [36] ZHU Yongchao, ZOU Jingui, YU Kegen. A New Sea Ice Distribution Detection Method Using GNSS Reflected Signals[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10):1472-1477. DOI:10.13203/j.whugis20160539(朱勇超,邹进贵,余科根.一种使用卫星反射信号探测海冰分布新方法[J]. 武汉大学学报(信息科学版), 2018, 43(10):1472-1477. DOI:10.13203/j.whugis20160539)
    [37] ZHANG Guodong, GUO Jian, YANG Dongkai, WANG Feng, GAO Hongxing. Sea Ice Edge Detection Using Spaceborne GNSS-R Signal[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5):668-674. DOI:10.13203/j.whugis20170050(张国栋,郭健,杨东凯,王峰,高洪兴.星载GNSS-R海冰 边界探测方法[J].武汉大学学报(信息科学版), 2019, 44(5):668-674. DOI:10.13203/j.whugis20170050)
    [38] DENG Pan, WANG Zemin, AN Jiachun, ZHANG Xin, YU Qiuze, SUN Wei. An Improved Algorithm Based on Wavelet Decomposition to Retrieve Snow Depth Using GNSS-R Signals[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6):863-870. DOI:10.13203/j.whugis20190181(邓攀,王泽民, 安家春,张辛,于秋则,孙伟.利用小波分解的GNSS-R雪厚反演改进算法[J].武汉大学学报(信息科学版), 2021, 46(6):863-870. DOI: 10.13203/j.whugis20190181)
    [39] WANG Dongwei, SUN Yueqiang, WANG Xianyi, BAI Weihua, XIA Junming, DU Qifei, CAI Yuerong, MENG Xiangguang, WU Chunjun, LIU Cheng, QIAO Hao, LI Fu. Water Surface Altimetry Using BD-3 B2a Reflected Signal[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11):1878-1886. DOI:10.13203/j.whugis20200278(王冬伟,孙越强,王先毅,白伟华,夏俊明,杜起飞,蔡跃荣,孟祥广,吴春俊,刘成,乔颢,李福.使用BD-3 B2a反射信 号测量水面高度[J].武汉大学学报(信息科学版), 2022, 47(11):1878-1886. DOI:10.13203/j.whugis20200278)
    [40] DENG Ken, ZHOU Peiyuan, DU Lan, CAI Wei. GNSS-R Altimetry Method with Multi-system Single-Frequency Tight Integration[J]. Geomatics and Information Science of Wuhan University, 2024, 49(1):146-155. DOI:10.13203/j.whugis20220785(邓垦,周佩元,杜兰,蔡巍.多系统单频紧组合GNSS-R测 高方法[J].武汉大学学报(信息科学版), 2024, 49(1):146-155. DOI:10.13203/j.whugis20220785)
    [41]

    LOWRY A R, ROCKEN C, SOKOLOVSKIY S V, et al. Vertical profiling of atmospheric refractivity from ground-based GPS[J]. Radio Sci, 2002, 37(3):1- 21.

    [42] WANG Bo. Method and Experiment of Atmospheric Ducts Estimation using Radar Clutter and GNSS[D].Xian:Xidian University, 2011.(王波.基于雷达杂 波和GNSS的大气波导反演方法与实验[D].西安:西安电子科技大学,2011.)
    [43]

    ZHANG J, WU Z, WANG B, et al. Modeling low elevation GPS signal propagation in maritime atmospheric ducts[J]. J Atmos Sol-Terr Phys, 2012, 80(12- 20.

    [44] ZHANG Jinpeng. Methods of Retrieving Tropospheric Ducts above Ocean Surface Using Radar Sea Clutter and GPS Signals[D].Xian:Xidian University, 2013.(张金鹏.海上对流层波导的雷达海杂波/GPS信号反演方法研究[D].西安:西安电子科技大学,2013.)
    [45] QI Y Q, ZHANG B, YANG D K, et al. Modeling and simulation of airborne GNSS ocean reflection signal[J]. Journal of BeijingUniversity of Aeronautics and Astronautics, 2017, 43(3):567-572(in Chinese).(祁永强,张波,杨东凯,等.机载GNSS海洋反射信号的建模与仿真[J].北京航空航天大学学报,2017,43(03):567- 572.)
    [46]

    LI B, ZHANG B, YU Y, et al. A Random Model and Simulation for Generating GNSS Ocean Reflected Signals[J]. IEEE Geosci Remote Sens Lett, 2019, 16(7):1036-40.

    [47] Liu L J, Xia J M, Bai W H, et al. Influence of evaporation duct on the effective scattering region of GNSS reflected signals on the sea surface[J]. Chinese J. Geophys.(in Chinese), 2019, 62(02):499-507, doi:10.6038/cjg2019L0689.(刘黎军,夏俊明,白伟华等.蒸发波导对GNSS海面反射信号有效散射区域的影响 [J].地球物理学报, 2019, 62(02):499-507, doi:10.6038/cjg2019L0689.)
    [48]

    LIU X, CAO Y, WU Z, et al. Inversion for Inhomogeneous Surface Duct without a Base Layer Based on Ocean-Scattered Low-Elevation BDS Signals[J]. Remote Sens, 2021, 13(19):3914.

    [49] ZHANG Y. Electromagnetic Wave Propagation in Space[M]. Xian:Xidian University Press,2007:104-106.(张瑜.电磁波空间传播[M].西安:西安电子 科技大学出版社,2007:104-106.)
    [50]

    The European Centre for Medium-Range Weather Forecasts. ERA5 hourly data on single levels from 1940 to present[DS/OL].[2024-08-30] https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=download.

    [51]

    YANG N, SONG D, SU D, et al. The Influence of Sea Surface Temperature From ECMWF Reanalysis Data on the Nonuniformity of Evaporation Duct[J]. IEEE Geosci Remote Sens Lett, 2024, 21(1-5).

    [52]

    Bai W, Xia J, Zhao D,et al.GREEPS:An GNSS-R End-to-End Performance Simulator[J].IEEE, 2016.DOI: 10.1109/IGARSS.2016.7730260.

计量
  • 文章访问数:  33
  • HTML全文浏览量:  1
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-28

目录

    /

    返回文章
    返回