超高层建筑变形GNSS多源融合监测方法及进展

王坚, 柳根, 柳絮, 韩厚增

王坚, 柳根, 柳絮, 韩厚增. 超高层建筑变形GNSS多源融合监测方法及进展[J]. 武汉大学学报 ( 信息科学版). DOI: 10.13203/j.whugis20240317
引用本文: 王坚, 柳根, 柳絮, 韩厚增. 超高层建筑变形GNSS多源融合监测方法及进展[J]. 武汉大学学报 ( 信息科学版). DOI: 10.13203/j.whugis20240317
WANG Jian, LIU Gen, LIU Xu, HAN Houzeng. Methods and Progress for GNSS Multi-Source Fusion Monitoring of Deformation in Super-High-Rise Buildings[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240317
Citation: WANG Jian, LIU Gen, LIU Xu, HAN Houzeng. Methods and Progress for GNSS Multi-Source Fusion Monitoring of Deformation in Super-High-Rise Buildings[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240317

超高层建筑变形GNSS多源融合监测方法及进展

基金项目: 

国家自然科学基金(42274029);北京市教育委员会科学研究计划项目资助(KM202410016007)。

详细信息
    作者简介:

    王坚,教授,主要从事GNSS位置服务及建筑变形监测研究。wangjian@bucea.edu.cn

    通讯作者:

    柳根,副教授。liugen@bucea.edu

Methods and Progress for GNSS Multi-Source Fusion Monitoring of Deformation in Super-High-Rise Buildings

  • 摘要: 超高层建筑变形监测是确保建筑长期安全运行的重要保障。针对GNSS多源融合超高层建筑变形监测面临的难题,构建了一套“感—传—融—用”一体化的GNSS多源融合变形监测解决方案。重点分析了超高层变形监测关键参数,梳理了GNSS变形监测单差、双差、三差模型的发展历程,总结了IMU振动监测、平移-沉降监测及扭转变形监测模型。在此基础上,阐述了经典数理统计算法、卡尔曼滤波及其衍生算法、智能学习算法的多源数据融合监测技术框架,并采用大型多功能振动台阵模拟超高层建筑的监测数据及天津中海城市广场超高层变形监测案例进行相关技术验证,结果表明所提出的监测体系具有较好的可行性和实用性,最后对未来GNSS多源融合监测技术进行了展望。
    Abstract: Objectives: Deformation monitoring of super-tall buildings is critical for ensuring their longterm safety and stability. GNSS-based multi-source fusion deformation monitoring technology plays a vital role in this regard, but research on the use of GNSS multi-source sensors for such monitoring remains limited and lacks a systematic approach. Current challenges include the narrow range of deformation parameters, incomplete GNSS/multi-source fusion models, weak data coupling capabilities, and low intelligence in monitoring and early warning systems. Methods: To address these issues, this research proposes an integrated GNSS multi-source fusion deformation monitoring solution based on a perception-transmissionfusion-application framework. Key deformation parameters for super-tall buildings, including translation, settlement, vibration, torsion, deflection, and tilt, are identified. The research also reviews the development of GNSS deformation monitoring models, with a focus on the double-difference model. Furthermore, the research improves models for IMU-based vibration, translation-settlement, and torsional deformation, enabling comprehensive monitoring of multiple deformation parameters. Based on these improvements, a complete GNSS multi-source fusion deformation monitoring method is established. Results: The proposed method is validated using data from a large-scale shaking table simulation and a case study of the Tianjin China Overseas Plaza super-tall building. The results confirm the effectiveness of the IMU-based accelerometer integration model, the Mahony complementary filter-based torsion monitoring model, and the use of IMUs for vibration monitoring in super-tall buildings. This research provides a comprehensive solution for GNSS/IMU multi-source sensor fusion in deformation monitoring, offering strong support for the safety monitoring and management of super-tall buildings throughout their lifecycle. Conclusions: This research offers a robust GNSS/IMU multi-source sensor fusion solution, providing strong support for the safety monitoring and operational management of super-tall buildings throughout their lifecycle.
计量
  • 文章访问数:  98
  • HTML全文浏览量:  6
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-11

目录

    /

    返回文章
    返回