川滇地区地壳形变动力学模式数值模拟研究综述

许才军, 王宇飞, 贺克锋

许才军, 王宇飞, 贺克锋. 川滇地区地壳形变动力学模式数值模拟研究综述[J]. 武汉大学学报 ( 信息科学版), 2024, 49(11): 2003-2015. DOI: 10.13203/j.whugis20240295
引用本文: 许才军, 王宇飞, 贺克锋. 川滇地区地壳形变动力学模式数值模拟研究综述[J]. 武汉大学学报 ( 信息科学版), 2024, 49(11): 2003-2015. DOI: 10.13203/j.whugis20240295
XU Caijun, WANG Yufei, HE Kefeng. Review on the Study of Numerical Simulation of Crustal Deformation Dynamic Models in Sichuan-Yunnan Region[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 2003-2015. DOI: 10.13203/j.whugis20240295
Citation: XU Caijun, WANG Yufei, HE Kefeng. Review on the Study of Numerical Simulation of Crustal Deformation Dynamic Models in Sichuan-Yunnan Region[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 2003-2015. DOI: 10.13203/j.whugis20240295

川滇地区地壳形变动力学模式数值模拟研究综述

基金项目: 

国家自然科学基金重点项目 42130101

详细信息
    作者简介:

    许才军,博士,教授,主要从事卫星大地测量学、地震大地测量学等方面的教学科研工作。cjxu@sgg.whu.edu.cn

    通讯作者:

    王宇飞,博士生。wangfj1116@whu.edu.cn

Review on the Study of Numerical Simulation of Crustal Deformation Dynamic Models in Sichuan-Yunnan Region

  • 摘要:

    川滇地区位于青藏高原东南缘,其地壳形变特征一直是研究的热点问题之一,而这种形变的动力学模式的驱动机理仍存在争议。首先综述了近年来基于有限元数值模拟方法研究川滇地区动力学模式的理论成果和研究进展,旨在探讨构造块体挤压、中下地壳流、重力扩散及地幔对流作用4种动力学模式对藏东南地区现今地壳变形的影响。其中块体挤压模式聚焦于地壳变形由块体边界断裂带活动性所控制,但在川滇菱形块体西侧边界断裂带及次级断裂的选取存在争议;中下地壳流模式认为,在中下地壳存在低粘度、能够发生流动的低速体,但其规模和尺度尚无清晰结论;重力扩散模式在川滇地区的高海拔差异下作用明显,但这一过程是否有中下地壳流参与目前并不确定;上地幔在地壳底边界施加的拖曳力对地壳运动的影响也逐渐受到重视。其次讨论了现今川滇地区动力学模式有限元数值模拟方法存在的问题与挑战,需要综合考虑多种动力学模式,合理构建有限元几何和物理模型,才能厘清各类外部和内部驱动力对地壳形变的贡献。最后指出了川滇地区动力学模式数值模拟研究的发展方向,充分考虑多物理场耦合,综合应用多学科资料,在高性能计算技术的基础下有效提升算法效率和稳定性可能是今后动力学有限元数值模拟研究的趋势。

    Abstract:

    Sichuan-Yunnan region is located in the southeast margin of the Tibetan Plateau, and its crustal deformation characteristics have been one of the hot issues in the research, but the driving mechanism of the dynamic model of the deformation is still controversial. First,the theoretical results and research progress of the structural deformation model in Sichuan-Yunnan region based on the finite element numerical simulation method in recent years are reviewed, aiming to explore the influence of four tectonic models: block extrusion, middle-lower crust flow, gravity diffusion and mantle convection. The block extrusion model focuses on the crustal deformation controlled by the activity of the block boundary faults, but there are controversies in the selection of the secondary faults. The middle-lower crust flow model holds that there are weak layers with low viscosity and flow ability in deep crust, but its scale and size are still unclear. The gravity diffusion model plays an obvious role in the high altitude difference of Sichuan-Yunnan region, but it is uncertain whether the middle-lower crust flow are involved in this process. The influence of the drag force exerted by mantle convection on the bottom boundary of the lithosphere on the crustal movement has been gradually paid attention to. Second, the existing problems and challenges of finite element numerical simulation methods of dynamic models in Sichuan-Yunnan region are discussed. It is necessary to comprehensively consider all 4 types of dynamic models and reasonably construct finite element geometric and physical models in order to clarify the contribution of various external and internal driving forces to crustal deformation. Finally, the development direction of numerical simulation of dynamic model in Sichuan-Yunnan region is pointed out. Considering the coupling of multiple physical fields and the comprehensive application of multi-disciplinary data, the improvment of algorithm efficiency and stability on the basis of high performance computing technology may be the future trend of dynamic finite element numerical simulation research.

  • http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20240295
  • [1]

    England P, Molnar P. Active Deformation of Asia: From Kinematics to Dynamics[J]. Science, 1997, 278(5338): 647-650.

    [2] 邓起东, 张培震, 冉勇康, 等. 中国活动构造基本特征[J]. 中国科学 D辑:地球科学, 2002,32(12):1020-1030.

    Deng Qidong, Zhang Peizhen, Ran Yongkang, et al. Basic Characteristics of Active Structures in China[J]. Science in China Series D-Earth Sciences, 2002,32(12):1020-1030.

    [3]

    Tapponnier P, Xu Z Q, Roger F, et al. Oblique Stepwise Rise and Growth of the Tibet Plateau[J]. Science, 2001, 294(5547): 1671-1677.

    [4] 乔学军, 王琪, 杜瑞林. 川滇地区活动地块现今地壳形变特征[J]. 地球物理学报, 2004, 47(5): 806-812.

    Qiao Xuejun, Wang Qi, Du Ruilin. Characteristics of Current Crustal Deformation of Active Blocks in the Sichuan-Yunnan Region[J]. Chinese Journal of Geophysics, 2004, 47(5): 806-812.

    [5]

    Xu C J, Li Z C, Wang Q. Prospect on Present-Day Crustal Kinematics and Dynamics Research in Sichuan-Yunnan Area with Geodetic Data[J]. Geo-spatial Information Science, 2005, 8(1): 1-7.

    [6] 程佳, 徐锡伟, 甘卫军, 等. 青藏高原东南缘地震活动与地壳运动所反映的块体特征及其动力来源[J]. 地球物理学报, 2012, 55(4): 1198-1212.

    Cheng Jia, Xu Xiwei, Gan Weijun, et al. Block Model and Dynamic Implication from the Earthquake Activities and Crustal Motion in the Southeastern Margin of Tibetan Plateau[J]. Chinese Journal of Geophysics, 2012, 55(4): 1198-1212.

    [7]

    Zheng G, Wang H, Wright T J, et al. Crustal Deformation in the India-Eurasia Collision Zone from 25 Years of GPS Measurements[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(11): 9290-9312.

    [8]

    Wang M, Shen Z K. Present-Day Crustal Deformation of Continental China Derived from GPS and Its Tectonic Implications[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(2): e2019JB018774.

    [9]

    Wang W, Qiao X J, Ding K H. Present-Day Kinematics in Southeastern Tibet Inferred from GPS Measurements[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(1): e2020JB021305.

    [10]

    Molnar P, Atwater T, Mammerickx J, et al. Magnetic Anomalies, Bathymetry and the Tectonic Evolution of the South Pacific Since the Late Cretaceous[J]. Geophysical Journal International, 1975, 40(3): 383-420.

    [11]

    Tapponnier P, Lacassin R, Leloup P H, et al. The Ailao Shan/Red River Metamorphic Belt: Tertiary Left-Lateral Shear Between Indochina and South China[J]. Nature, 1990, 343: 431-437.

    [12]

    Sun M, Yin A, Yan D P, et al. Role of Pre-existing Structures in Controlling the Cenozoic Tectonic Evolution of the Eastern Tibetan Plateau: New Insights from Analogue Experiments[J]. Earth and Planetary Science Letters, 2018, 491: 207-215.

    [13] 许志琴, 杨经绥, 李海兵, 等. 青藏高原与大陆动力学: 地体拼合、碰撞造山及高原隆升的深部驱动力[J]. 中国地质, 2006, 33(2): 221-238.

    Xu Zhiqin, Yang Jingsui, Li Haibing, et al. The Qinghai-Tibet Plateau and Continental Dynamics: A Review on Terrain Tectonics, Collisional Orogenesis, and Processes and Mechanisms for the Rise of the Plateau[J]. Geology in China, 2006, 33(2): 221-238.

    [14]

    Tapponnier P, Peltzer G, Le Dain A Y, et al. Pro⁃pagating Extrusion Tectonics in Asia: New Insights from Simple Experiments with Plasticine[J]. Geology, 1982, 10(12): 611.

    [15]

    Avouac J P, Tapponnier P. Kinematic Model of Active Deformation in Central Asia[J]. Geophysical Research Letters, 1993, 20(10): 895-898.

    [16]

    Replumaz A, Tapponnier P. Reconstruction of the Deformed Collision Zone Between India and Asia by Backward Motion of Lithospheric Blocks[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B6): 2285.

    [17]

    Molnar P, Tapponnier P. Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of Recent Continental Tectonics in Asia Can Be Interpreted as Results of the India-Eurasia Collision[J]. Science, 1975, 189(4201): 419-426.

    [18]

    Loveless J P, Meade B J. Partitioning of Localized and Diffuse Deformation in the Tibetan Plateau from Joint Inversions of Geologic and Geodetic Observations[J]. Earth and Planetary Science Letters, 2011, 303(1/2): 11-24.

    [19]

    Gan W J, Zhang P Z, Shen Z K, et al. Present-day Crustal Motion Within the Tibetan Plateau Inferred from GPS Measurements[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B8): B08416.

    [20]

    Shen Z K, Lü J N, Wang M, et al. Contemporary Crustal Deformation Around the Southeast Borderland of the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B11): B11409.

    [21]

    England P, Houseman G. Extension During Continental Convergence, with Application to the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B12): 17561-17579.

    [22]

    Flesch L, Bendick R. The Relationship Between Surface Kinematics and Deformation of the Whole Lithosphere[J]. Geology, 2012, 40(8): 711-714.

    [23]

    Zhang P Z. A Review on Active Tectonics and Deep Crustal Processes of the Western Sichuan Region, Eastern Margin of the Tibetan Plateau[J]. Tectonophysics, 2013, 584: 7-22.

    [24]

    Zhang P Z, Shen Z K, Wang M, et al. Continuous Deformation of the Tibetan Plateau from Global Positioning System Data[J]. Geology, 2004, 32(9): 809.

    [25]

    Wang C Y, Lou H, Silver P, et al. Crustal Structure Variation Along 30°N in the Eastern Tibetan Plateau and Its Tectonic Implications[J]. Earth and Planetary Science Letters, 2010, 289: 367-376.

    [26] 张智奇, 姚华建, 杨妍. 青藏高原东南缘地壳上地幔三维S波速度结构及动力学意义[J]. 中国科学 D辑:地球科学, 2020, 50(9): 1242-1258.

    Zhang Zhiqi, Yao Huajian, Yang Yan. Shear Wave Velocity Structure of the Crust and Upper Mantle in Southeastern Tibet and Its Geodynamic Implications[J]. Science in China Series D-Earth Sciences,2020,50(9): 1242-1258.

    [27]

    Hu J F, Badal J, Yang H Y, et al. Comprehensive Crustal Structure and Seismological Evidence for Lower Crustal Flow in the Southeastern Margin of Tibet Revealed by Receiver Functions[J]. Gondwana Research, 2018, 55: 42-59.

    [28]

    Clark M K, Royden L H. Topographic Ooze: Building the Eastern Margin of Tibet by Lower Crustal Flow[J]. Geology, 2000, 28(8): 703.

    [29]

    Royden L H, Burchfiel B C, King R W, et al. Surface Deformation and Lower Crustal Flow in Eastern Tibet[J]. Science, 1997, 276(5313): 788-790.

    [30]

    Bischoff S H, Flesch L M. Normal Faulting and Viscous Buckling in the Tibetan Plateau Induced by a Weak Lower Crust[J]. Nature Communications, 2018, 9: 4952.

    [31] 熊熊, 滕吉文. 青藏高原东缘地壳运动与深部过程的研究[J]. 地球物理学报, 2002, 45(4): 507-515.

    Xiong Xiong, Teng Jiwen. Study on Crustal Movement and Deep Process in Eastern Qinghai-Xizang Plateau[J]. Chinese Journal of Geophysics, 2002, 45(4): 507-515.

    [32]

    Becker T W, Faccenna C. Mantle Conveyor Beneath the Tethyan Collisional Belt[J]. Earth and Planetary Science Letters, 2011, 310(3/4): 453-461.

    [33] 曹建玲, 石耀霖, 张怀, 等. 青藏高原GPS位移绕喜马拉雅东构造结顺时针旋转成因的数值模拟[J]. 科学通报, 2009, 54(2): 224-234.

    Cao Jianling, Shi Yaolin, Zhang Huai, et al. Numerical Simulation of GPS Observed Clockwise Rotation Around the Eastern Himalayan Syntax in the Tibetan Plateau[J]. Chinese Science Bulletin, 2009, 54(2): 224-234.

    [34]

    Yin A, Harrison T M. Geologic Evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280.

    [35] 徐锡伟, 闻学泽, 郑荣章, 等. 川滇地区活动块体最新构造变动样式及其动力来源[J]. 中国科学 D辑:地球科学, 2003, 33(S1): 151-162.

    Xu Xiwei, Wen Xueze, Zheng Rongzhang, et al.Pattern of Latest Tectonic Motion and Its Dynamics for Active Blocks in Sichuan-Yunnan Region, China[J]. Science in China Series D-Earth Sciences, 2003,33(S1): 151-162.

    [36] 阚荣举, 张四昌, 晏凤桐, 等. 我国西南地区现代构造应力场与现代构造活动特征的探讨[J]. 地球物理学报, 1977, 20(2): 96-109.

    Kan Rongju, Zhang Sichang, Yan Fengtong, et al. Present Tectonic Stress Field and Its Relation to the Characteristics of Recent Tectonic Activity in Southwestern China[J]. Chinese Journal of Sinica, 1977, 20(2): 96-109.

    [37] 王阎昭, 王恩宁, 沈正康, 等. 基于GPS资料约束反演川滇地区主要断裂现今活动速率[J]. 中国科学 D辑:地球科学, 2008, 38(5): 582-597.

    Wang Yanzhao, Wang Enning, Shen Zhengkang, et al. Inversion of Current Active Rate of Main Faults in Sichuan-Yunnan Area Based on GPS Data Constraints[J]. Science in China Series D-Earth Sciences, 2008, 38(5): 582-597.

    [38]

    Li C, van der Hilst R D, Meltzer A S, et al. Subduction of the Indian Lithosphere Beneath the Tibetan Plateau and Burma[J]. Earth and Planetary Science Letters, 2008, 274(1/2): 157-168.

    [39]

    Huang Y, Meng G J, Cheng X, et al. Present–Day Crustal Deformation in the Southeastern Tibetan Plateau: Insights from Three–Dimensional Finite–Element Modeling[J]. Tectonophysics, 2023, 863: 229983.

    [40]

    Lei J S, Zhao D P, Su Y J. Insight into the Origin of the Tengchong Intraplate Volcano and Seismotectonics in Southwest China from Local and Teleseismic Data[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B5): B05302.

    [41]

    Lei J S, Zhao D P, Xu X W, et al. Is There a Big Mantle Wedge Under Eastern Tibet?[J]. Physics of the Earth and Planetary Interiors, 2019, 292: 100-113.

    [42]

    Huang Z C, Wang L S, Xu M J, et al. P and S Wave Tomography Beneath the SE Tibetan Plateau: Evidence for Lithospheric Delamination[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(10): 10292-10308.

    [43]

    Wang J, Wang Q, Xu C B, et al. Cenozoic Delamination of the Southwestern Yangtze Craton Owing to Densification During Subduction and Collision[J]. Geology, 2022, 50(8): 912-917.

    [44] 王辉, 刘杰, 申旭辉, 等. 断层分布及几何形态对川西及邻区应变分配的影响[J]. 中国科学 D辑:地球科学, 2010,40(4):458-472.

    Wang Hui, Liu Jie, Shen Xuhui, et al. Influence of Fault Distribution and Geometry on Strain Distribution in Western Sichuan and Its Adjacent Areas[J]. Science in China Series D-Earth Sciences, 2010,40(4):458-472.

    [45]

    Yin L, Luo G. Fault Interaction and Active Crustal Extrusion in the Southeastern Tibetan Plateau: Insights from Geodynamic Modeling[J]. Journal of Asian Earth Sciences, 2021, 218: 104866.

    [46] 朱良玉. 青藏高原东南缘地壳形变动力学数值模拟研究[D]. 北京: 中国地震局地质研究所, 2020.

    Zhu Liangyu. Numerical Simulation of Crustal Deformation Dynamics in Southeast Margin of Qinghai-Tibet Plateau[D]. Beijing: Institute of Geology,China Earthquake Adminintration, 2020.

    [47]

    Leloup P H, Tapponnier P, Lacassin R, et al. Discussion on the Role of the Red River Shear Zone, Yunnan and Vietnam, in the Continental Extrusion of SE Asia Journal, Vol.163, 2006, 1025–1036[J]. Journal of the Geological Society, 2007, 164(6): 1253-1260.

    [48]

    Rui X, Stamps D S. Strain Accommodation in the Daliangshan Mountain Area, Southeastern Margin of the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(9): 9816-9832.

    [49] 张建国, 皇甫岗, 谢英情, 等. 越南红河断裂活动性研究[J]. 地震地质, 2009, 31(3): 389-400.

    Zhang Jianguo, Huangfu Gang, Xie Yingqing, et al. Study on the Activity of Red River Fault in Vietnam[J]. Seismology and Geology, 2009, 31(3): 389-400.

    [50]

    Kohlstedt D L, Evans B, Mackwell S J. Strength of the Lithosphere: Constraints Imposed by Laboratory Experiments[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B9): 17587-17602.

    [51] 朱守彪, 石耀霖. 用遗传有限单元法反演川滇下地壳流动对上地壳的拖曳作用[J]. 地球物理学报, 2004, 47(2): 232-239.

    Zhu Shoubiao, Shi Yaolin. Genetic Algorithm-Finite Element Inversion of Drag Forces Exerted by the Lower Crust on the Upper Crust in the Sichuan-Yunnan Area[J]. Chinese Journal of Geophysics, 2004, 47(2): 232-239.

    [52] 王辉, 曹建玲, 张怀, 等. 川滇地区下地壳流动对上地壳运动变形影响的数值模拟[J]. 地震学报, 2007, 29(6): 581-591.

    Wang Hui, Cao Jianling, Zhang Huai, et al. Numerical Simulation of the Influence of Lower-Crustal Flow on the Deformation of the Sichuan-Yunnan Region[J]. Acta Seismologica Sinica, 2007, 29(6): 581-591.

    [53] 杨辉, 滕吉文, 皮娇龙. 青藏高原通道流模型动力环境的数值模拟[J]. 地球物理学报, 2013, 56(8): 2625-2635.

    Yang Hui, Teng Jiwen, Pi Jiaolong. Numerical Simulation of the Geodynamical Condition About the Channel Flow Model in Tibetan Plateau[J]. Chinese Journal of Geophysics, 2013, 56(8): 2625-2635.

    [54]

    Li Y J, Chen L W, Tan P, et al. Lower Crustal Flow and Its Relation to the Surface Deformation and Stress Distribution in Western Sichuan Region, China[J]. Journal of Earth Science, 2014, 25(4): 630-637.

    [55] 尹迪, 董培育, 石耀霖. 顾及下地壳拖曳力的川滇地区地表形变有限元数值模拟[J]. 中国科学院大学学报, 2021, 38(1): 1-8.

    Yin Di, Dong Peiyu, Shi Yaolin. Numerical Simulation of Surface Deformation in Sichuan-Yunnan Region Considering the Drag Forces Underneath the Lower Crust[J]. Journal of University of Chinese Academy of Sciences, 2021, 38(1): 1-8.

    [56]

    Yin L, Luo G. Does Middle-Lower Crustal Flow Exist in the Eastern Tibetan Plateau? Insights from Finite-Element Modeling and Geodetic Observations[J]. Tectonophysics, 2022, 832: 229363.

    [57]

    Jackson J. Strength of the Continental Lithosphere: Time to Abandon the Jelly Sandwich?[J]. GSA Today, 2002, 12(9): 4.

    [58]

    Sun Y D, Leng W, Liu-Zeng J. A Geodynamic Deformation Model of the Chuandian Region of Sou⁃theastern Tibet, with Constraints from GPS Data, Faults and Low-Velocity Zones[J].ESS Open Archive,2020, DOI: 10.1002/essoar.10502689.1. doi: 10.1002/essoar.10502689.1

    [59]

    Bai D H, Unsworth M J, Meju M A, et al. Crustal Deformation of the Eastern Tibetan Plateau Revealed by Magnetotelluric Imaging[J]. Nature Geoscience, 2010, 3(5): 358-362.

    [60] 张东宁, 许忠淮. 青藏高原现代构造应力状态及构造运动的三维弹粘性数值模拟[J]. 中国地震, 1994, 10(2): 136-143.

    Zhang Dongning, Xu Zhonghuai. Three Dimensional Elasto-Visco Numerical Simulation of Qinghai-Xizang Plateau’s Recent Tectonic Stress Field and It’s Motion[J]. Earthquake Research in China, 1994, 10(2): 136-143.

    [61]

    Liu M, Yang Y Q. Extensional Collapse of the Tibetan Plateau: Results of Three-Dimensional Finite Element Modeling[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B8): 2361.

    [62]

    Copley A. Kinematics and Dynamics of the Southeastern Margin of the Tibetan Plateau[J]. Geophysical Journal International, 2008, 174(3): 1081-1100.

    [63]

    Copley A. The Formation of Mountain Range Curvature by Gravitational Spreading[J]. Earth and Planetary Science Letters, 2012, 351: 208-214.

    [64] 范桃园, 孙玉军, 吴中海. 青藏高原东缘旋转变形机制的数值模拟[J]. 地质通报, 2014, 33(4): 497-502.

    Fan Taoyuan, Sun Yujun, Wu Zhonghai. Numerical Modeling Analysis of the Rotation Deformation Mechanism of the Eastern Margin of the Tibetan Plateau[J]. Geological Bulletin of China, 2014, 33(4): 497-502.

    [65]

    Li Y J, Liu M, Li Y H, et al. Active Crustal Deformation in Southeastern Tibetan Plateau: The Kinematics and Dynamics[J]. Earth and Planetary Science Letters, 2019, 523: 115708.

    [66]

    Pang Y J, Wu Y Q, Li Y J, et al. The Mechanism of the Present-Day Crustal Deformation in Southeast Tibet: From Numerical Modelling and Geodetic Observations[J]. Geophysical Journal International, 2023, 235(1): 12-23.

    [67] 熊熊, 许厚泽, 滕吉文, 等. 青藏高原及邻区地幔对流应力场及地球动力学含义[J]. 武汉大学学报(信息科学版), 2003, 28(6): 692-696.

    Xiong Xiong, Xu Houze, Teng Jiwen, et al. Mantle Convection Generated Stress Field Beneath Tibetan Plateau and Its Adjacent Areas and Its Geodynamic Implication[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 692-696.

    [68]

    Sternai P, Jolivet L, Menant A, et al. Driving the Upper Plate Surface Deformation by Slab Rollback and Mantle Flow[J]. Earth and Planetary Science Letters, 2014, 405: 110-118.

    [69]

    Sternai P, Avouac J P, Jolivet L, et al. On the Influence of the Asthenospheric Flow on the Tectonics and Topography at a Collision-Subduction Transition Zones: Comparison with the Eastern Tibetan Margin[J]. Journal of Geodynamics, 2016, 100: 184-197.

    [70] 郑群凡, 石耀霖. 印度板块持续向北运动的驱动力来源: 基于地幔动力学数值模拟的讨论[J]. 中国科学院大学学报, 2021, 38(6): 721-728.

    Zheng Qunfan, Shi Yaolin. Driving Forces for Ongoing Northward Indentation of India into Asia: Insight from 3D Numerical Modeling of Mantle Dynamics[J]. Journal of University of Chinese Academy of Sciences, 2021, 38(6): 721-728.

    [71] 张东宁, 袁松涌, 沈正康. 青藏高原现代地壳运动与活动断裂带关系的模拟实验[J]. 地球物理学报, 2007, 50(1): 153-162.

    Zhang Dongning, Yuan Songyong, Shen Zhengkang. Numerical Simulation of the Recent Crust Movement and the Fault Activities in Tibetan Plateau[J]. Chinese Journal of Geophysics, 2007, 50(1): 153-162.

    [72]

    Zhu A Y, Zhang D N, Zhu T, et al. Influence of Mantle Convection to the Crustal Movement Pattern in the Northeastern Margin of the Tibetan Plateau Based on Numerical Simulation[J]. Science China Earth Sciences, 2018, 61(11): 1644-1658.

    [73]

    Zhu A Y, Zhang D N, Jiang C S. Numerical Simulation of the Segmentation of the Stress State of the Anninghe-Zemuhe-Xiaojiang Faults[J]. Science China Earth Sciences, 2016, 59(2): 384-396.

    [74] 刘影, 于子叶, 张智奇, 等. 基于密集流动台阵构建的川滇地区高分辨率公共速度模型2.0版本[J]. 中国科学 D辑:地球科学, 2023, 53(10): 2407-2424.

    Liu Ying, Yu Ziye, Zhang Zhiqi, et al. 2023. The High-Resolution Community Velocity Model V2.0 of Southwest China, Constructed by Joint Body and Surface Wave Tomography of Data Recorded at Temporary Dense Arrays[J]. Science in China Series D-Earth Sciences, 2023, 53(10): 2407-2424.

    [75]

    Pan Z H, Weibel J A, Garimella S V. Numerical Simulation of Evaporating Two-Phase Flow in a High-Aspect-Ratio Microchannel with Bends[J]. Journal of Heat Transfer, 2017, 139(2): 020901.

计量
  • 文章访问数:  236
  • HTML全文浏览量:  26
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-14
  • 刊出日期:  2024-11-04

目录

    /

    返回文章
    返回